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1
. What is a differential equation ?

"

A differential equation is any equation ,
in

which a function and its derivatives appear.

Simple examples : Let aeR and :Re
.

= i(t) = au(t) (describes exponential growth or

decay

= i(t) = au(t) (describes eg .

oscillations (

Zet u : Rx[0 ,c) -> R .

= Gu(x ,+) + a2xu(x) = 0 (describes transport ,
we will see that later

Mary differential equations come from physics. This
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is the reason why they play sud an important
role in physics , chemistry ,

and engineering. But

they also play an important role in mathematics,
eg ., in analysis , differential geometry , hopology,
probability, ...

If we want to describe e.g .

the motion
of a planet,

we need to solve a differential equation. We
have a closer look atthis situation in the next

section.

1 .2
.
Newton's equations

he classical mechanics a particle is described

by a point his
space whose location is given
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by a function
X(t)

G-1):

RiaV(t)

The derivative X(t) of this function with respect to

time is the Velocity of the particle

V = X : R+R3 (1 . 2)

and the derivative of the velocity is the acceleration

a = v = Y : R- ? (1 . 3)

h such a model the particle is usually moving
in a force field
# : R- R3

,
(1 .4)

which exerts a force F(x) on the particle at x
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Then Newton's second law of motion state
What

,
at each point X his space , the forcing

acting on the particle must be equal tother

acceleration times he mass (a positive constant)

of the particle , that is,

mx(t) = F(x(r)) , for all tER . (1 .5)

Equation (15) is an ordinary differential
equation (ODE) because X depends only

on one variable
.

It is of second order since

the highest derivative of X appearing
in the equation

is of degree two. If I is linear/nonlinear
we

say
theat (15) is a linear/houlinear

ODE
.

More precisely , (1 .5) is a system
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of ordinary differential equations
suice there

is one equation for eal of the three components
Xi : R +R

,
i = 1

,
2

,3 & X
.

he our case X is called the dependent variable

and t is called the independent variable .

It

is always possible to decrease the order I ar
ODE to one if we are willing to increase
the number

of dependent
variables

.

This is

achieved if we consider the first order system
↑

X(t) = v(t) fat and purple is used

to highlight
(t) = En F(x(t) (1 .6)

instead of (1 .5). Note that we now have two

dependent variables ,
X and V

.
The numberof

independent variables staye the same.
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Example: J Stone folling towards the surface
of the earth .

In this case the force field
is approximately given by

F(x) = - mg(% ) . ( .7)
S

mass gravitational (positive constant)

Hence
,
our system of differential equations reads

mi = o,
my = 0

I

mis =

-lg . (8)

-

As we will see in a second, Vo

Eq . (1 .8) has many
solutions. X.

-To pick one ,
we need to fix Y Surface earle /

initial conditions
.
Suie "11I
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eac equation in (18) isof second
order

,
we need

to fix two parameters .

In our case it is natural

to prescribe the position X(0) and the Velocity v(d)

of the particle at t = o .

Let FIVEM and

assume that

X(0) = Y , v(o) = V
.

G .9)

To solve (1 .8)
,
we integrate all three equations first

from o to s and then again from o to + :

9) gui(e) dyds = mf(x() -v)ds%
-

= m(x(s) - X(d) (10)

= m(x(t) - x(0) -Ft) = m(x(t) - E - Et).
=>

(same for eq will in replaced by(2)
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- ug &9 dyds = St9mis(a) dyds A .1)
00

00

~
-

= S

~

=12
= m(xy(t) - - Tst)

.

↑

See previous page

We conclude that

X-(t) = + t
,

Xz(t) =(z + Tet
,

X (H) = 3 + st - t (1 .12)

or in more compact rotation

x(t) = y + t - Efes
.

(1 . 13)

= Planet encircling the sun placed at the
center of our coordinate system .

In this case

we need to work will the gravitational force,
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whil
,
unlike in the previous case , depends on

X
.

It reads tational constant , positive
gravi

↓

F(x) = - 5mMi X + 0. (14)
Y T

massof massof sun
planet

Our system of differential equations
is now given

by BmMX ,
mi =

-x+xz)3

BmMX2
mie =

-x+xz)3

8mMX3
mis =

-+x)3 (15)

and it is no longer as easy
to solve

.

As long
as the initial conditions are sud that the
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planet does not more on &

straight line towards X
= 0

Sun at 10, 0 ,0

(see picture) , the system (1 . 15) I ,
i

plant
always has a minque solution Ex

that exists for all times. The

solution can be a circle , an ellipsoid, a parabola,

or a hyperbola (conic sections) .

We will
,
however,

not go into more
details here.

Take home message : Solutions
to ODEs do

not need to exist for all times .

In our example-

this happens because the planet falls into the Sun.
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Summary : An ordinary differential equation
CODE) is an equation ofthe form
F(x(t)

,
x
Y (H), ..., x()(H) = 0 . (1)7

X : ReR"
,
nelb k-th order derivative
↑&

↑

just Ruils of

↑

I X
n = 1 ,

2
,3

F :
R& -> R

I The ODE is called linear if F is a linear

function (see e.g . first two eqs . on p . 1)
. J F

is not linear it is called nonlinear
.

= The ODE in (1 .16) is of k-the order saic this
is the highest derivative of X .

=) We say (1 . 16) is a system of ODES if
n> 1

.
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= For a k-th order ODE we need to prescribe
& initial conditions to be able to find a

unique solution . Often this will be prescribed values

for X(0) , x()(0) , 000 X(h-1) (0)
·

J Des
may fail

to have solutions. 1 key have
a solution it may

not exist for all times (see
the example on p .

10 and the related exercise) :

I ODEs may fail to have a unique solution

for prescribed initial conditions.
This will be

discussed further in the exercises .

I * solution (or classical solution) to a k-1

order ODE is a 24-funcion (l-times continuously
differentiable) solving the equation .

J An ordniary differential equation is said to
be well-posed if it admits a unique



13
solution (for given initial data) and if that
solution depends continuously on the parameter
(as e.g. Whe initial conditions or parameters

appearing in the equation) . This is relevant

because these parameters usually as not known

exactly (that is without error e.g . resulting

from a measurement) in applications .

The reduction of k-the order systems to first order

systems will be discussed in the next section.
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1
.

3
.
Reduction of a be-th order

system to afirst order system

Let us conside the following system of ordinary
differential equations

T
x() = f.(t , X ,

xx)
,...,

x( - )
,

Rate
derivative x(a) = f2(t , x ,

xa)
, ...,

x( - 1) ,

·

(x(e) = fu(t , x ,
x(), . . .,
x(2)(17)

Y
I "er

&

ER

8 : Rent -> R

Any sud be-th order system can be reduced to

a first order system by changing to the new
Set
y
= (X ,

xH)
, ..., x(-1) of dependent
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Variables
.

This fields the new first order system
= Ye Note Wat yi

: R-R" for i = 1 ...e !

i = yz Equation is called non-
: autonomous because right

ir= Ye
rice depends explicitly

↓ ou to

in = f(t ,y) . (118)

We can even add t to the dependent variables

z = (t ,y) , making he right hand tide ride-

pendent of t

En = 11

Ez = 23 Equation is called

autonomous

· because the right side does

In = Eat d
not depend explicitly
out (it does depend

Ent = f(z) . implicitly on t via (1 . 19)
X(

I one is interested in writing a computer program
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to solve DDEs
,
it is therefore sufficient to write

a solver for first order systems.

1
.

4. First order linear ODEs

We start by recalling the solution to the

equation Caet , X
: ReR)

[ x(t)
= ax(t)

=> x(t) = Yeat
,

1 . 20)
X(0) =

which describes exponential growle (ano) or

exponential decay (920) .

A slightly more

complicated version of this equation is Ca : ReR
,

X: R=R)
talion for exponential

at

another
no

funcioni exp
- (t) = a(t)x(t) -
[ X(0)= => x(t) = exp(f a(s)ds)
-

=: Alat) (1 .21)
Definition -
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The solution to the equation (a ,
b

. x
: ReR)

*() = a(t)x(t) + b(t)
TS X(0) = because of thisbeam

the (1 .22)

equation is called inhomogeneous

can be expressed in torns of A and reads

x() = A(at) + fA(s ,+)g(s)ds .
(1 .
23)

I answer that you
know this already from previous

classes. What I really want to discuss here is

Me equation <X : R=R"
,
MER*, n 1)

Y(t) = MX(t)E x(d) = X
,

(1 .24)

What is
,
a vector version of (1 .20). Let me

highlight , that M is an uxu makix.
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In case of the similar equation (1 .20) the solution

was given in
turns of the exponential function .

Does something similar work also for (1 .24) ?

That is
,
can we define the exponential function

also for a madix ? The answer to both questions
is yes

!

Definition (Exponential function of a matix) : Let

MER* be an uxu makix .

We define He

exponential function of le by =I . M .....M
-> a-times

exp(u) =[ (1 .25)
n !

u=0

Let us ched with a formal computation that we
can use (1 .25) to find a solution to (1 . 24).
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A computation is called formal in not every step
(e .S . moving a derivative into a sum) is justified
with a proof . We define x(t) = exp(tm) with

*ER" and MER
*"

and compute

x*=
#-X

u= 0 u=1

=u =un
u= 0

-

exp(tu)

This looks good ! If He series in (1 .25) converges
andIf we are allowed to carry out step (*) in

[1 .26) then we have a solution to (1 .24). It can

be shown that these two statements are correct.

We will
,
however

, not discuss their proofs here .
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Example : Assume that Il is a real symmetric

uxu matrix .

From
your

linear algebra class you
know thatM can be diagonalized .

That is,

Her exist n eigenvalues X1 ... xn and an

orthogonal matix O will

M = ot(-)0 . (1 .27)
I

have pose
.

For the matix exponential ofM ,
his implies

exp(u) =00
j = 0-

oot = 1 j-tries
↓= )o
j =0

= (0)0. (1.20)
O exp(in)

That is
, exp(u) is diagonal in the same basis as
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M and its eigenvalues are given by en ...e

Having foundthe solution to (1 .24) , we can

also conside the following problem (X ,
b : R-R",

MERux) :

Y(t) = Mx(t) + b(t) ,E X(d) = X
.

(1 . 29)

The solution to this equation is given by please ches !)
↓

x() = exp(tm)z + Sexp(M( -S))b(s)ds . (1 .30)

What happens if the matix M is time-dependent ?

Comparison with (1 .21) suggest a solution of the

form (b(H = 0 for all ↓)
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I

x(t) = exp)S
,
u(s)ds)=

"

However
,
this is not correct. The reason is

that the ratices M(t.) and M(t2) for to t

may not commute. I one carefully analyzes
His problem one sees that the solution is

given by (again blt) = 0 for all 5)

Of(u)(t)= Sigh. .gri
O

O

M(t!) 00. M(ti) <. ( .31)

The function OF(M)(t) of M is called he

time-ordered exponential . It satisfies

S ↑
OE(u)(t) = M() OF(u)(t)

DE(M)(t) = Auxu (1 .32)
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We will not go into more details here.

1.
5

. First order nonlinear equations

Let f : R-R be a continuous function and

conside the equation (X : RER
,
ER)

E x(t)
= f(x(t)) ,

X(0) = * .

(1.33)

If f(x) +o for all X we can rewrite the above

equation , integrate both rides from o to t and

find ↓

Sh ds = + G .34)

That is
, any solution

to (1 .33) must also Satisfy (1.34) .
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We also have

X(t)
↓

S i) ds = 9 i dy = : F(x()
-
4 .35)

f(x(s) Y x(0)

change coordinates in integral

y
= x(s)

, dy = X(s)ds

If
te function F(x) is ninvertible thou

x() = F
-

(t) (1 .36)
↑

universe of F

is a solution to (1 .34)
,
and therefore also to (1 .

33).

Examples :] f(x) = X2 , > 0. Here,

=x) = g = -[] = ( - E)a3

and

F(x() = + E - xyy) = t
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EY

x()= -

(1 .38)

The solution existe only for tE[0 .

=- )
.

At t =x=

it blows up .


