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2. 1. The transport equation

Probably the simplest of all PDES is the transport

equation will constant coefficients .

This is the equation

2u(x ,H + b .Du(x ,+) = 0 iR +xR"(2 - 1)

Here u : R"xR
+
-> R

,
tER

+ iX , beR" ,
and

Du(xh)=Me (2 .2)

deudes the gradient of the function se

How do solutions to (2 . 1) look like ? Let us write

2 .1) in the form

5Dee(xir) = 0 neile 5 = (3 , 1) and CT = (D
,
2)· (.3)

That is. the directional derivative of ee(x2) in he

direction of t vanishes. In other
words

,
in the

direction of 5 he function u(xit) is constant !
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This motivates the following computation : we define

z(s) = u(x + sb ,
++s)

,
SeR, (2 .4)

where e denotes a solution to (2 .
1). Then we

compute

z(s) = b .Du(x+sb,d+ s) + 2u(x+ Sb , t+s)(2 .5)

2)
Thus z/s) is a constant function of s , and consequently

for eac point (xt) ,
he is constant on the line

through (x1t) will direction (b ,
1) ER* Hence

, if
we know the value of a at any point on each
sud line

,
we know its value everywhere

2
. 1 .1 . Initial-value problem

This motivates the formulation of thefollowing initial-
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Value problem (oc)
11 Definition
8 A

2+u(x ,t) + b .Du(x ,+) = 0 i RXR +

E u(x ,0) = g(x) on Rx [t = 03 (2 . 6)

Here beR" and g : R"- R are known
,
and the problem

is to find u .

Given (x1t)
,
the live through (X,t) with direction

(1 ,3) equals te set [(X+ +b ,
++s)/ste]. This

live hits the place P = Rx 56=03 when s = -t,

at the point (x-tb , 0)
.

Suic i is constant on his

live and u(X- +b ,
0) = g(x- (b) ,

we deduce

u(x ,t) = g(x- +b) .

(2.7)

As one can easily ches ,
this choice fori indeed

solves (2 .6) .

To make sense of this reasoning we

require ge2"(R) ,
that is

, g is continuously differentiable.
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2
.
1
.
2
.

The inhomogeneous problem

Next we look at the associated nonhomogeneous

problem

[tra(it)
+ bDeit) = f(xt) in RX+

u(ax) = g(x) on Rix&t =03
.

(2 .8)

Let's quickly recall how we solved the equality

x() = a(t)x() + b(t) , (x ,
a

,
b : R +-R[x(d)= FER) (2.9)

We first solved he homogeneous problem
X(t) = a(t)x(t)[x() = => x(t) = exp)fa(s)ds)
-

Propagator A (0 , +)
(2 . 10)

and teen wrote the solution to the inhomogeneous
problem in terms

of the propagator as
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x() = A(at)x + 9 A(s ,+)b1s)ds
.

(2 .1)

La analogy , we define the Propagator P of
the transport equation by

P(g ,t)g(x) = g(x - (t-s(b) .

(2 .1)

The natural condidate for the solution to (2 .6) the

reads

u(xit) = P(at(g(x) + f P(s ,H)f(x ,S)ds
↑

Pshifte the X-coordinate
and leaves s unchanged.

=f(x- +b) + 9 f(x - (t -s(b , s)ds
. (2 .13)

Let's chec :

20 u(t , x) = 2ng(x- (b) + 28 f(x- ( - s)b , s)ds

= - b .Dg(x - (b) + f(x ,t) - bfxf(x - (t -s)b ,s)ds

= - b.Du(x ,t) + f(x , t) .

(2 .14)
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Moreover , u(x ,d) = g(x) .

We conclude that the

function re(xit) defined in (2 . 13) indeed solves

(2 .8) ! For all steps to make sense we require

gee (RR) and that f : RXR + 15 a continuous

function that is additionally continuously differentiable
with respect to the first argument (the space coordinate).

Note that we did not differentiatef with respect
to time

.

Here is a picture how solutions to the homogeneous

transport equation look like for n =r

g(x- +b)
same shape (transported
-I↑ --

t = 0 t = 1

This ends our discussion
of

the transport equation.
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2
.

2. The heat equation

In this section we discuss the problem of heat diffusion.
We start with a derivation of the heat equation from
basic physical principles. For the trave port equation
we quitted this step because the equation is so

simple .

2 .
2
.
1

.
Derivation of the heat equation

Zet us consider an infinite metal rod and
suppose we are given an initial heat distribution

at tie t = 0. Let the temperature at the point
XER at trie teR+= (0 , 00) be devoted by
u(xit) .

metal rod
↓

-
X

3



&

For a small number 420 and some XoER conside

now the interval S = [Xo , Xoth] of lengh h.

The amount of heat energy in S at time t is

given by

H() = 5fu(x ,d)dx , (2)

where 630 is a constant called the specific heat

of the material . Therefore , the
leat flow into S

is

GrH(t) = 692m(x ,t)dx ,
(2.2)

S

whil is approximately equal to

Sh &fre (Xort) ( .3)

sure the length of S is h (we assume here that
are(t) is a continuous functions of X).

Now we apply Newton's law of cooling ,
which
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states that heat flows from the higher to lower temperature
at a rate proportional to the temperature difference , that is,
he drivative

.

The heat flow through the right end

Of our viterval is therefore
(8xu(xo+ k , t) ( .4)

where Kno is the leat conductivity of
the material.

A similar arguement for the other side shows that
the total heat flow through S is given by

k [ 2xee (xo+ h , t) - 2xx(xo ,+)] ,
(m .5)

whereno is the Harmal conductivity of the
material .

We therefore have

6h26 en(xoit) = (c [2xz(xoth , d) -2xz(xor)]

= Fartkot=
xee(xoth ,H - 2xx(xoit)

h

hig 2 hot)
.

As
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be the limit h-o we thus discovered the heat

equation
2pz(x ,t) = 2u(x , t)

.

(2 .7)

A similar derivation can be carried out if one replaces
X ER by XER" and one finds

2 u(x ,
+) = Xu(x ,t) (2 .8)

wite the Laplace operator or Zaplacian A de-

fired by
Aukt)= (2 .9)

One is often interested in solving the initial value

problem
2pee (xit) = x2e(x ,t) in Rx+,[ u(xid = g(x) in Rix &t=03 , (n%

will a continuous function& that gor to zero

for #- 0 .

In the presence of heat sources



Additionalexample (Intermezzo)
12I

Zet us consider the one-dimention heat equation

22 (xit) = 2exit) in RxR+. (H)

Daim : The function u(xit)= exp
solves (#)

.

Let's check : J Auxit) =2exp)

= - texpt)+ exp)
= 2xu(xit) = 2xEtexp)=exp))()
= 2m(xit) = 2x exp(-)(-)

= exp)()"+ exp))()

Let's inset this rito (#) and check
.

We find



Ea
- texpt)+ exp7)
= exp)()" +*p7)(z)

.

We conclude thatu(xit)= exp)* ) indeed

solves (*)
.

How does it look like ? It is a Gaussian

function that is getting broader and broader for larger
↓ Moreover ,

we have

judx=exp

·
That is , the integral fou(xit) dx does not depend
out as it should be (energy conservation ,

see

derivation of heat equation) . -
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described by a continuous function f(xit) one is

interested inhe inhomogeneous problem

[ 26u(x ,H) - x2e(x ,t) = f(x ,t) in R"x+,

u(x ,d = g(x) in R*x[t =03
.

(2 .11)

The heat equation can also be studied in an interval

of finite length or ,
more generally ,

in a subset

& R calle finite volume (as e.g .

the wit dise

D = [(xiz)ER21 xy =13 M2) .

As in the case

of the problem on R we need to prescribe an
initial condition g ,

and we need to prescribe

boundary condition (b 2 .

10) and (2 .11) we assumed

that g(x) -o for 1-0 ,
which then also holds

for the solution ze(x1) : That is ,
we "set a boundary

condition at IX1= 00" . (
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I the case n = - (metallic rod) the most common

boundary conditions are BC bounday
condition

↑

(a) Prescribed temperature (Dirichlet BCs)

We have u(0 , H) = u, -R ,

er(4t) = urER , (L = lughaf rod)

or u(at) = ue(t) ,

er (2 ,
t) = ur(t)

.

(2 . 12)

(b) Prescribed temperature flax (Neumann BCs)

Welave (at) = belt)
,

(t) = Pr(t) . (2.13)

In case of insulating boundaries ,
i
. e

.

zero flux,
these would be

(at) = o= (4t)
.

(2. 14)
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(2) Radiating (Robin) boundary conditions

be the case where one or bolk ends are suc Heat

the heat flux is proportional to the temperature ,
we

have

& (at) = eular), (4) = Race M it). Rest

-
ER

,
could also be hime-dependent

Initial condition : We need to prescribe an initial condition
Heat satisfies the boundary conditions.

Remark : he higher space dimentions we need to

prescribe the value of the function at the

boundary or in normal drivation (directional
derivative pointing outward) or a relation
between them. An example will be discussed

inthe next section.
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Examples : J Heat equation with Dirichlet

boundary conditions

Let us conside the initial value problem

2+ u(x ,+) = 2u(x ,+) in [-TR ,TTR] xR+ 1

S u(x ,t) = o on [-T2 ,T/] x R+ ,

u(xo = cos(x) on [-T12,TR] x St =03 .

Claim : The solution is given by

u(x ,t) = etcos(x)
.

Check : (a) 2 u(xit) = - etcos(x)

(4) 2Yu(x ,H) = e
+
2x ( sai(x)) =

- etcos(x)

() e (T , +) = 0 = u(π( , t)

(d) u(x , d) = cos(x)

Note : him ut = o for all x[-]
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=) Heat equation with Neumann boundary
conditions

Now we conside the initial value problem

2+ u(x ,+) = 2u(x ,+) in [-TR ,TTR] xR+ 1

S 2xu(x ,+) = 0 on [-T2 ,T/] x R+ ,

u(x ,d = 1 on [-T12,TR] x St =03 .

Claim : The solution reads u(xit) = 1 .

Check : (fu(x) = 0 = G(u(x , t)

2xu(π( ,
+) = 0 = 2xu(π( , t)

u(x ,0) = 1

Note :M(xt) = 1 is a steady state of the above initial

value problem .

That is
,
it does not depend on time.
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2.3
. Zaplace and Poisson equations

Assume we conside the heat equation in the two-

dimentional umit dise

D = [(x-xz)ER2(xi+ x2 = 1] (2 .16)

with Dirichlet boundary conditions ,
i
. e.

22(x ,t) = xx(x , t) in DxR+ ,

S u(x ,d) = g(x) in Dx[t = 03
,

u(x ,+) = f(x) on 2D
.

(217)

Here

aD = [(xn ,xz)eR2(xi+ xi = 13 (2 . 10)

duots the rent circle
,
whil happens to be ther

boundary ofD .

The function g :D+R is assumed

to satisfy g(x) = f(x) for all x2D.
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After a long period of time ,
there will be no more

heat exchange ,
so that the system reaches thermal

equilibrium and 24
= 0. In this case ,

the

heat equation reduces to the Zaplace equation

Ar(x) = o in D,

E u(x) = g(x) on D
.

(2 .15)

Solutions to the equation Au = 0 are called

harmonic functions and have many intesting
properties (we will discuss this later) .

The steady state solutions of the inhomogeneous
heat equation

22(x ,t) - xx(x , t) =g(x)inDxR+

S u(x ,d) = g(x) in Dx[t = 03
,

u(x ,t) = f(x) on 2D
, (220)
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with g : D-R satisfy the Poison equation

Xu(x) = g(x) in D

E u(x) = g(x) oGD
.

( .21)
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Example

Let us consider the Laplace equation Are(x) = 0
in the annulus A =EXER210 < 1x112<13 .

As

-A

boundary condition we impose u(x) = o for all x
will (x12 = 1 and u(0) = + 00. The second

condition
may

seem funcy at first sight but
is will allow us to find a beautiful solution
that is also a steady state of her heat equation.
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Claim :
The function ze(x) = -he ((X112) solves
the Zaplace equation with the prescribed
boundary conditions .

Let's check : ] 2xl(11)=
*

= 2 be (((x12)=2-

By symmetry , we
leave

= 2 ((((x1(2)= -*
=11x11

We conclude that
-

=(x) = 2xu(x)+ 2x(x) =-+
= 0

.

& Let x St . (x1 = 1 .

Then u(x) = -(1) = 0.

I we have lin
IIxI-30

22(x) = plansle (((x() = + 0 .
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Interpretation as steady state of heat eq: We

have a strong pointwise source of heat at X =o

at temperature to ,
which

pumps the same amout

of heatwnto the system
that is lost at the other

bounday (EXER) (IXI = 15) ,

which has temperature 0.

r
- hu(x)

#
-
-

x
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2.4. The wave equation

Our first goal in this section isdo drive the equation

of motion for a vibrating string .

A
very good example

are the strings in a piano.

2 .
4
.

1
.

Derivation of the wave equation

Inaguie a string placed in the (xig)-plane,
and stretched along the X-axis between X= o

and X = 1
. If it is set to vibrate ,

its displacement

y
= u(x) is then a function of X and t

ot
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To drive an equation of motion for
the string
,

we consider it as being subdividedmito a large
number N of masses (which we

thinkof as
individual particles) distributed along the X-axis.

↳.....↓
↓↓

O L

Like this
,
the n-the particle has it X-coordinate at

Xn= .

We answe that ead of these particles

is oscillating in the y-direction only .
Moreover

, each

particle will have its oscillation linked to its immediate

neighbor by the tension of the
string.

We set yult) = r(xnit) ,
and note that xure-Xa= k=

If we assume theat the string has constant denting
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goo ,

it is reasonable to assign mass equal to ge
to ead paride . By Newton's law (see first
Lecture) glig equals the force acting on the

n-te particle .

We now make two assumptions :

(1) Only nearest neighbor particles
interact with each

other
.

(2) The force coming from therightof ther-he

patide is given by

(yate - yu), (2 .22)

where Tho is the coefficient of tention of the

string. There is a similar force coming from the

left ,
and it is

= (ya- -ya)
.

(2 .23)

We thes obtain the following equation of motion for
Lice n- the parside :
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grijn(t) = E [Ynn (H) + ya- (H) - 2yn()
= E [u(xu+h , +) + u(xn - k , b) - 2x(xnt)]
--

Taylar approximatio
= u(xu , t) + 2xz(xn ,w)h + EEXu(xnt)(+ o(()

↓Yhino

= [am(xn ,+) + o(u))
gene(nit) = [u(xxt) + o(h)] . (2 .24)

When we take the limit he o on both side (note heat

this implies N-co) we find the wave equation
zekit)= (2.25)

i = C

For reasone Heat will be apparant later , the parameter
aso is called the velocity of the motion.
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Le higher dimention the wave equality reads

2e(xit) = A
,
ze(x , t)

.

(2 .26)

The two-dimentional wave equation ,
e.g ., describes a

vibrating membrane (think of a tambouine).
It is

also possible to include an additional force F(x ,4)

acting on the string or the membrane from
above or

below. In this case he wave equation reads

2e(xit) - xu(x ,+) = F(x,t) .

(2 .27)

Boundary and initial conditions

As in the case of the heat equation we
need to

percore the values of(xit) at the spatial

boundary of our set .
We can choose the same

boundary conditions as described there
. Of course,

the physical renterpretation of the boundary conditions

changes .

Dirichlet B's describe a string that
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is fixed at the end points ,
Neumann BCs can

be used to describe a string that can more freely
atthe boundary prin ,

and Robin BCs can be used

to model a force that pulls the string back to

displacement zero and that depends linearly on the
current displacement-

Similarly as in the case of the leat equation
we also need to impose initial conditions. However,

unlike as in this case
,
we must prescribe two

initial conditions because the wave equation has
two trie derivatives

.

In manytiruations one presabes
the position and the velocityof the function re(xit)
at t = o

,
that is,

u(x ,0) =f(x) , (position)
Aru(x , d) = g(x) . (Velocity (2 .28)
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Examples : J Wave equation in R

Zetv consider U intial value problem
2u(x ,+) = 22u(t) in RxR+,

u(xd) = &(x) on Rx & t = 03
,[ (ru)(x ,d) = - c(xf(x) ou Rx[t=03
,

with a function gft?

Daim : The solution is given by u(xt) = g(x
-c)

.

Check : 2xu(xit) = 22 f(x - c) = g"(x - ct)

2u(xit) = 25g(x-ct) = 2g"(x- ct)
T

u(xid = g(x) second derivative

2xu(x ,d) = 28(x-c))p
- 0

= - c)(x)

Conclusion : Solution has the same form as that of
the transport equation !



- Wave equation with Dirichlet boundary
29

conditions

Next
,
we consider the equation

2jek) = 2? ext) in ETTR] X R+,
u(x ,+) = 0 on E-T ,Th] xR+,

u(x ,d) = cos(x) on [-TR ,TR] x [t = 0]
(2 + u)(x , 0) = o on [T ,TR] x [t =03

Claim : The solution is given by

e(x ,t) = cos(x) cos(t)

Check :(Fu(xH) = - cos(x)cos(t)

2 u(x ,t) = - cos(x) cos(t)

u(T(2 , t) = cos(-T(z) cos(t) = 0

u (πt(2 , f) = cos(iT(z) cos(t) = 0

u(x ,0) = cos(x) ; (2+x)(x , d) = 0

Conclusion : Shape of spatial part stays the same
Oscillation in time. This describes a
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vibrating string fixed at -T andTh.

no volocity at fast but notXat t=0 excitateda-X X

T/2

- pasta=x
-T/z T/2

↑

again
maximal excitation

but no velocity
↑ x(x , 2π)

One period of the* motion of the string.



= Wave equation with Neumann boundary conditions

Let's consider the equation

2u(x,t) = 22u(x ,+) in [T ,+R] XR+

S (2x2)(x , +) = 0 on [-T
, Th] XR+

u(x ,d) = Sin(x) on [-T (2,h] x 36 =03
(2+ u)(x ,d) = 0

on [-T , T(2] x [t=03

Daim : The solution reads u(xit) = thi(x)cos(t)

Check : 25u(xit) = - trik) cost)

2x u(xt) = -ti(x) cos(t)

2x u(=T( , t) = cos(π(z)cos(t) = 0

u(x ,0) = fui(x)

(Gru) (x ,0) = - Si(x)fi(d) = 0

u(x ,π(z)

high
-- 1 22(2) = -Sri()
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u(x ,) u(x

, 3(z)

#More F
ur(x , 2π)

#
Conclusion : This describes the motionof a string with

open
ends

·

Can be constructed by attaching
the string to a wing that moves freely
up and down a metallic rod.

-il
string
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2
.

5. Classificationof linear second
order PDEs

A general linear PDE of second order for a

function u(x2) with xyeR is of the form
a(x ,y)exx + b(x ,y)uxy + c(x ,y)eyy
+ d(x ,y)(x + e(x ,y((y + f(x ,y(x = g(x ,y) . (2 .2)

Her a ,
b

,
c

,
d

,
2

,fig , u
: R-R and we used

the notation

Hxx = 2x1
, ex

= 2x2 , Uxy
= 2x2ye (2.30)

and so forth. The three second order PDEs we
have encountered so far are
(i) zep = eexx . (heat equation)
(ii) ly = uxx

, (wave equation)
(iii) exx + zyy = 0 . (Japlace equation) (2 .31
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or , using the same independent raiables ,

X and
y

(i) exx-my = 0 Cheat eft
(ii) eexx-lyy = 0 (wave eq)
(iii) exx + lyy

= 0 (Zaplace eq . ) (2 .32)

Analogous to characterizing quadratic equations

ax+ bxy + cy+ dx + ey +f =0(2 .33)

as either hyperbolic , parabolic or elliptic determined

by 62 - 4ac > 0
, (hyperbolic

5 - 4ac = 0 1 (parabolic
b - 4ac 10 , Celliptia) (2.34)

we do the same for PDEs .

For the heat equation a = 1 , b = 0 , c
= o

,
so be4ac

= o and the beat equation is parabolic . Similarly ,
we see that the wave equation is hyperboli , and
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Zaplace's equation is elliptic .

This leads to a natural question : is it possible to

transform (2 .29) to another form ,
where the new

PDE is simpler ? That is , are ther coordinate

transformations
r(x ,y)

,
S(x ,y)

,
(2. 35)

that allow we to transform every
linear second order PDE

to one of the standard forms :

Mrr-Mss + lots = 0
, Hyperbolic ,

less+ lots = 0 parabolic,
Mor + Mess + lots = 0

, elliptic , (2.36)

where lots stands for lower order terms ?

Before we provide a general statement , let us
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discuss the following example.

Example :
Let me conside the PDE

2xxx - 2xxy + 5uzy = 0. (2.37)

Her a = 2 ,
b = - 2

,
c = 5 and the equation

is elliptic because

82- 4a = 4 - 4 -2 . 5 = 36/0
.

(2 .3)

Let us introduce the new variables

r(x ,y) = 2x+y ,
S = x-y (2.39)

An application of the chain rule shows

Ux= =+ = uk + usSx
,

ly-Zuu = urytus,a

exx
=

Mrr(*x)2+ Mr *x + Mss(Sx)+ ugSxx + 2urs *Sx ,
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Rxy
= Mur Kry + Mr Ry+ usSxSy + Ms Sxy + Mrs(rxSy + rySx) ,

My
=

Urr (ry( + Mr Tyy + Mss(sy)+ usSyg + 2ursj9y . (2 .40)

When we insert the specific form of r(x,y) and
S(xiy) from (2 .33) wito (2 .40) this gives

lxx = 4Mr + 4urs + Mess
,

Nxy = 2Urr-Urs-MSs

lyy
= Mrr-2 urs + Mss . (2 .41)

Next
,
we riset (2 .41) into (2 .37) and find

2)(4ere + 4hrs + ess) - 2(2ux - Urs - Ms)
+ 5(ur - Curs + ms) = 0 , (2.42)

whil simplifies to

Nor + Mss = 0. (2 .43)

This is Zaplace's equation ,
whal is also elliptic .
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General statement : Confide the general linear

second order PDF in (2 .25) with constant coefficient
Lab , c do not depend on XY)

.

We have either

4) b - 49c >0
, (paraboli

or (2) b2 - 4 ac = 0
, (hyperbolid

or (3) b2-4ac10
· Celliptia) (2 .44)

Then there exists a coordinate transformation r(xy)
,

S(y) sud that the equation reads

(1) Mrr-Mss + lots = 0
,

(2) less+ lots = 0
,

(3) Mortless + lots = 0
,

(2 .45)

In the new coordinates.

Remark : An alternative form in case 4) is

Urs + Ro
.

t
.

= o
. (2.46)
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To motivate this
,
we confide

My - 24xx = 0 (2 .
47)

and introduce the coordinates

↓ (x ,+) = X-ct and S(x ,+) = X+ct. (2
.48)

We lisert

* = 1 , y = - c , (xx = 0= 1

8 = 1 , Sj = c , Sxx
= 0 = St

, (2+9)

into (2 .40) and find

lxx = Mor + Uss + 2urs
,

l
+
= Curr + Mss- 2urs) (250)

Whenuiseted into (2.47) this fields

Mrs = 0. (251)
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Properties of linear 2nd order PDES

1
. Elliptic PDES : Solutions are as regular as ther

coefficients allow .
E. g .

solutions of
the Laplace

equation AUK) = 0 are analytic where they are

defined. Solutionsof
the Poisson equation Au(x) =g(x)

are k + 2 times continuously differentiablein gi
k times continuously differentiable.

2. Parabolic PDES : Solutions become smooth

will time
.

That is
, if u(x , o) is e.g . only

continuous but not differentiable them(xit) is

for all too an infinitely differentiable (one also

says smooth) function of X and t

3. Hyperbolic DDEs : On page
28 we leave seem

teat the wave equation onR can describe transport.
* consequence is that the solution has exactly
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the some regularity as the initial condition

.

That is,

↑ 8 (notation of example) is a
29 function , then

the solution ise in space andth in time
.

In

higher directions here are solutions with a certain

gain in regularity with time .

But his is a subtle topic
that we cannot discuss her.



General solution to the wave equation
*2

onR

On
p . 39 we showed heat the coordinate transformation

(2 .48) transforms the wave equation onI do the

form urs = o .

This equation can be integrated :

ba b

0 = SS 2 . 2, u(ris)dsdr = Sasulais
o - 2su(as)]ds

= u(a ,
b) - u(a , d) - Psu)(0 ,

b) + (2su)(0 , 0)

E ula , b)
=
uad+(a) - Asmod 12

functiong functiono second

fint ergement argement only

only

We conclude that there are two functions F(r) and
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G(s) Such that

u(ris) = F(r) + G(s)
,

(2.53)

whose precise form depends on the initial conditions

that we hipose .

Note however
,
that without any

reference to initial conditions z in (2 .53) solves

Urs = 0 .

Swie r = X-ct and S = x+ct the

function
a(x ,t) = F(x-c) + G(x+ ct) (2 .54)

solves

zu(x , +) = - 2u(x ,+)
.

(2 .55)

How do we incorporate an initial condition ? Let us

assume that u(xio = f(x) and (ru) (x ,0) =g(x).

Given this information we need to find F and 6.
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Let's riset :

= u(xd = F(x) + f(x) = f(x) ,

= Prm)(d) = Gr (F(x- (H) + G(x+ ct)))y
= 0

= xF'(x) + (G(x) = g(x)

= (G(x) - F'(x)) = S (2 .56)

= Ausab : F(x) = Ef(x) - zy(x)

G(x) = zf(x) + z2() (2 .57)

This implies F(x) + C(X) = f(x) ,
so the first

equation is satisfied .

We also have

G'(x) - F(x) = z(f(x) + y((x) - f(x) + y'(x)
= y(x) = 8

= 2) = - fglady for some XoER .

(2.50)
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We conclude Heat

u(x ,t) = z(f(x- ct) + f(x+ ct)) + E(y(x+ ct)
- y(x-cH)

=Elgi- fig]
= g*dy .

(259)
X-Cf

Let us summarize our findings in the following
Theorem .

Theorem (General solution wave equation onR) :

Let f : R-R be twice continuously differentiable,

let g : R-R be continuously differentiable and consider
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He intial value problem

2ju(xit) = 2u(x,t) in RxR+,

E u(x ,d) = f(x) on Rx[t = 03
,

(ru)(x ,0) = g(x) on Rx &t = 03
.

(2 .60)

The solution is given by

u(xit) = z(f(x -c) + f(x+ct)+ f dy
. (2 .61)

X-Ch

Eq .
(2 . 61) is called d'Alembert's formula .

Please insert the initial conditions from our example
on p . 28 into (2.61) and ches heat it gives

the

correct solution.


