Gross-Pitaevskii limit of a homogeneous Bose gas at positive temperature

Andreas Deuchert

Institute of Science and Technology Austria (IST Austria)

QMath @ Aarhus August 13, 2019

Joint work with Robert Seiringer

GP limit in box at T > 0

The homogeneous Bose gas in experiments

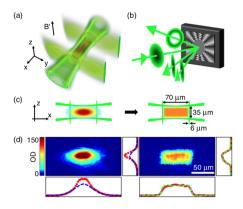


Figure: A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, Z. Hadzibabic, Phys. Rev. Lett. **110**, 200406 (2013)

Also possible: 2d Bose gas, 2d and 3d Fermi gases.

Andreas Deuchert (IST Austria)

GP limit in box at $\overline{T} > 0$

The ideal Bose gas

Consider the ideal Bose gas on $[0, L]^3$ with periodic boundary conditions. The **expected number of particles** in the grand canonical ensemble is given by

$$N = \sum_{p \in \frac{2\pi}{L} \mathbb{Z}^3} \frac{1}{\exp\left(\left(p^2 - \mu\right)/T\right) - 1}.$$

Here $\mu(T, N, L)$ and T denote the chemical potential and the temperature.

The expected number of particles in the Bose-Einstein condensate (BEC) $N_0(T, N, L) = [e^{-\mu/T} - 1]^{-1}$ is, as $N \to \infty$, to leading order given by

$$rac{N_0(T,N,L)}{N} \simeq \left[1 - \left(rac{T}{T_{
m c}}
ight)^{3/2}
ight]_+ \hspace{1cm} ext{with} \hspace{1cm} T_{
m c} = 4\pi \left(rac{N/L^3}{\zeta(3/2)}
ight)^{2/3}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hamiltonian of the interacting model

Hamiltonian with Gross-Pitaevskii scaling:

$$H_N = \sum_{i=1}^N -\Delta_i + \sum_{1 \le i < j \le N} L^{-2} N^2 v \left(N |x_i - x_j| / L \right).$$

Here Δ is the Laplacian on $[0, L]^3$ with periodic boundary conditions and $v \ge 0$ such that scattering length is finite.

The scattering length a_N of $L^{-2}N^2v(N|x|/L)$ behaves as

$$a_N \sim L N^{-1} \quad \Rightarrow \quad a_N \ll \varrho^{-1/3}.$$

Free energy and Gibbs variational principle

The free energy of the gas is given by

$$F(T, N, L) = -T \ln \left(\operatorname{Tr} \left[e^{-H_N/T} \right] \right),$$

where the trace is taken over functions that are symmetric under an exchange of the coordinates.

Gibbs variation principle: Let

$$\mathcal{S}_{\textit{N}} = \Big\{ {{\Gamma} \in \mathcal{L}\left({{\mathcal{L}}_{\rm{sym}}^2\left({{\mathbb{R}}^{3\textit{N}}} \right)} \right)} \; \Big| \; 0 \le {{\Gamma}} \le 1 \; \text{and} \;\; {\text{Tr}} \, {{\Gamma}} = 1 \Big\},$$

then

$$F(T, N, L) = \inf_{\Gamma \in S_N} \underbrace{\{\operatorname{Tr} [H_N \Gamma] - TS(\Gamma)\}}_{=\mathcal{F}(\Gamma)} \quad \text{with} \quad S(\Gamma) = -\operatorname{Tr} [\Gamma \ln(\Gamma)].$$

1-pdm and Bose-Einstein condensation

The **one-particle reduced density matrix (1-pdm)** of a state $\Gamma \in S_N$ can be defined via its integral kernel by

$$\gamma(x,y) = \operatorname{Tr}\left[a_{y}^{*}a_{x}\Gamma\right].$$

Here a_x^* and a_x denote the usual creation and annihilation operators. Equivalently, this kernel can be defined by

$$\gamma(x,y) = N \int_{\mathbb{R}^{3(N-1)}} \Gamma(x,q_1,...,q_{N-1};y,q_1,...,q_{N-1}) d(q_1,...,q_{N-1}).$$

A sequence of states $\Gamma_N \in S_N$ with 1-pdms γ_N is said to show **Bose-Einstein condensation (BEC)** if

$$\liminf_{N\to\infty}\sup_{\|\phi\|=1}\frac{\langle\phi,\gamma_N\phi\rangle}{N}>0.$$

Mathematical literature on dilute Bose gases, T = 0

- Ground state asymptotics of dilute Bose gas in thermodynamic limit: Dyson '57 (Upper bound hard spheres), Lieb, Yngvason '98 (Lower bound), Lieb, Seiringer, Yngvason '00 (General upper bound)
- Ground state asymptotics in GP limit: Lieb, Seiringer, Yngvason '00, Lieb, Seiringer '02, Boccato, Brennecke, Cenatiempo, Schlein '17, '18
- **GP limit of rotating Bose gas**: Lieb, Seiringer '06, Nam, Rougerie, Seiringer '16
- **Bogoliubov theory in GP scaling**: Boccato, Brennecke, Cenatiempo, Schlein '18
- Dynamics of BEC in GP limit: Erdös, Schlein, Yau '09 and '10, Pickl '15, Benedikter, de Oliveira, Schlein '15

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mathematical literature on dilute Bose gases, T > 0

Results in thermodynamic limit:

- Free energy asymptotics of dilute Bose gas in thermodynamic limit: Seiringer '08 (Lower bound)
- Free energy asymptotics of dilute Bose gas in thermodynamic limit: Yin '10 (Upper bound)

Results in GP limit:

• Free energy asymptotics and prove of BEC for trapped gas in GP limit: Deuchert, Seiringer, Yngvason '18

Theorem: Part 1 (Asymptotics of free energy)

Assumptions:

- v a nonnegative, radial and measurable function which is integrable outside some finite ball (⇔ a_N < ∞)
- Limit: N $ightarrow \infty$, T \lesssim T $_{
 m c}$ and a $_N \sim L N^{-1}$

Notation:

- $F_0(T,N,L) \sim L^3 T^{5/2} \sim L^{-2} N^{5/3}$ the free energy of the ideal gas
- *ρ*₀(*T*, *N*, *L*) = *N*₀(*T*, *N*, *L*)/*L*³ expected density of particles in condensate of ideal Bose gas

We have

$$F(T, N, L) = F_0(T, N, L) + 4\pi a_N L^3 \left(2\varrho^2 - \varrho_0 (T, N, L)^2 \right) (1 + o(1)).$$

Note that $4\pi a_N L^3 \varrho^2 \sim L^{-2} N$.

Theorem: Part 2 (Asymptotics of 1-pdm)

Notation:

- State Γ_N with 1-pdm γ_N and free energy $\mathcal{F}(\Gamma_N)$
- $\gamma_{N,0}$ denotes 1-pdm of the non-interacting canonical Gibbs state

For any sequence of approximate minimizers Γ_N of the free energy in the sense

$$\mathcal{F}_{N}(\Gamma_{N}) = F_{0}(T, N, L) + 4\pi a_{N}L^{3} \left(2\varrho^{2} - \varrho_{0}(T, N, L)^{2}\right) (1 + o(1))$$

we have

$$\left\|\gamma_{N}-\gamma_{N,0}\right\|_{1}=o(N).$$

Remarks

• Result for 1-pdm implies BEC in the form

$$\lim_{N \to \infty} \sup_{\|\phi\|=1} \frac{\langle \phi, \gamma_N \phi \rangle}{N} = \left[1 - \left(\frac{T}{T_c} \right)^{3/2} \right]_+$$

with critical temperature T_c of the ideal gas.

- Quantities related to the ideal gas, that is, $N_0(T, N, L)$ and $F_0(T, N, L)$, can be replaced by their grand canonical versions.
- Uniformity in temperature as long as $T \leq CT_c$ for some C > 0.
- Treatment of **Dirichlet boundary conditions** possible.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Ingredients of the proof

- **Upper bound:** Much simpler proof than in thermodynamic limit (Yin '10) possible because the system in the GP scaling is much more dilute (5 vs. 55 pages).
- Lower bound: Adaption of the proof of the lower bound in the thermodynamic limit (Seiringer '08) with an error of the same size.
- Asymptotics of 1-pdm and BEC: C-number substitution with general state instead of interacting Gibbs state, novel bound for bosonic relative entropy, Griffith argument to detect condensate.

Thank you for your attention!

GP limit in box at T > 0

- ∢ ⊒ →

э