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Setting

» Suppose A is large, nonsymmetric, n X n matrix,
and we seek the smallest magnitude eigenvalues of A.

> Shift-invert. Apply (restarted) Arnoldi to A™*:

eigenvalue \ € o(A) becomes 1/\ € o(A™Y)
The smallest |\| becomes the largest |1/)|.

» Polynomial preconditioning gives an option when A~lv is too expensive,
e.g., on distributed memory parallel machines.

» Polynomial preconditioning [Saad 84]. Apply (restarted) Arnoldi to 7(A):

eigenvalue A € 0(A) becomes m(\) € o(m(A))

Design 7 so the smallest |\| is mapped to an “easy to find” w(\).

» 7(A)v requires only matrix-vector products (easy in parallel) ...
... but how do you design 7, and apply it stably?



Polynomial Preconditioning and Krylov Subspaces

Standard Arnoldi (k steps) extracts eigenvector estimates from

Ki(A,v) = span{v, Av, ..., A"y}

Preconditioned Arnoldi (k steps) extracts eigenvector estimates from
Ki(m(A), v) = span{v, m(A)v,..., (A v}
C span{v,Av,..., Ad(kfl)v} = Kak—d+1(A, v).
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» Polynomial preconditioning gives access to much higher powers of A,
for a fixed subspace dimension k.

However, each single matvec m(A)v requires d matvecs with A.

> Given a good bound for the unwanted eigenvalues in o(A),
one could design 7 using best approximating polynomials:
“Arnoldi—Chebyshev" approach [Saad 1984; Ho, Chatelin, Bennani 1990 . ..]).
Extensive literature for both polynomial filters for eigenvalue problems,
and semi-iterative methods for linear systems.



GMRES-Based Polynomial Preconditioners

» “Hybrid GMRES" approach [Nachtigal, Reichel, Trefethen 1992].
At step d, GMRES solves the optimization problem

[|w(A)b|| = min [|p(A)b|.
pEPy
p(0)=1

Denote the optimal polynomial as m € P4, 7(0) = 1:

n(z):(17951).~(17é).

Here 61, ...,04 denote the roots of GMRES residual polynomial
(harmonic Ritz values). (These roots are easy to compute; order matters.)

» Contrast with the approach of Heidi Thornquist [2006]:
— Precondition with the iteration polynomial q(z) from, e.g., GMRES:

m(z)=1-2q9(z) = n(A)=1-Aq(A) — q(A)=A"



GMRES Residual Polynomials: An Example

d =1 GMRES iteration
Linear transformation is no help (shift-invariance of Krylov spaces)

1.2

1

0.8

0.6

mapped eigenvalues, 7(\)
(

1 1 1 1 1

0 0.5 1 15 2
z
e )\ = eigenvalues of A



GMRES Residual Polynomials: An Example

d = 2 GMRES iterations

Quadratic transformation separates small eigs, clusters larger eigs
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GMRES Residual Polynomials: An Example

d = 4 GMRES iterations
Quartic transformation further separates small eigenvalues
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GMRES Residual Polynomials: An Example

d = 8 GMRES iterations
Degree 8 transformation further separates small eigs, mixes up larger eigs
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GMRES Residual Polynomials

p4 p4
m(z) = (1— 9—1) (1— E)
» When taking 7 as the GMRES residual polynomials, we expect
7(A) =1

for the eigenvalues \ of A nearest to the origin.
(Recall that 7(0) = 1 by construction.)

> Extreme case: if A = 0, consider GMRES behavior for a singular system.
» GMRES handles the nonnormality of A naturally.

» Semi-iterative methods would typically use Ritz information to estimate
the spectrum. We use Ritz information to build 7 directly.

» One must order 61, ...,04 to promote stability when computing 7(A)v;
[Nachtigal, Reichel, Trefethen 1992] recommend a modified Leja ordering.



Roots of w and Nonnormality

Bidiagonal “twisted Toeplitz" matrix, N = 100, real eigenvalues in (0, 27].
[Trefethen, Chapman 2004; Trefethen, E. 2005].
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Roots of w and Nonnormality

Bidiagonal “twisted Toeplitz" matrix, N = 100, real eigenvalues in (0, 27].
[Trefethen, Chapman 2004; Trefethen, E. 2005].
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How Does Restarted Arnoldi with 7« Perform?

Return to the simple example shown earlier.
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How Well Does it Work?
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Compute 5 smallest eigs of A
using restarted Arnoldi with
max subspace dimension = 10:
“Arnoldi(10,5)"

Increasing d can
vastly reduce iterations.
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Increasing d can
vastly reduce iterations.

For restarted Arnoldi,
preconditioning can even
reduce matvecs significantly.



A Simple Convergence Result

Proposition. Suppose A is symmetric positive definite,
O< << - < A
Let m(z) = (1 — z/61)(1 — z/62) be the GMRES polynomial of degree d = 2. If
014 02 > Ao + An,

then the asymptotic convergence rate for hull({w();)}/_>) is faster than
the asymptotic convergence rate for [A2, An].

1
(A1)

(X))
()




A Simple Convergence Result

Proposition. Suppose A is symmetric positive definite,
O< << - < A
Let m(z) = (1 — z/61)(1 — z/62) be the GMRES polynomial of degree d = 2. If
014 02 > Ao + An,

then the asymptotic convergence rate for hull({w();)}/_>) is faster than
the asymptotic convergence rate for [X2, An].

A1 A2 An

An— A1 ¢
= rate = —~ 7 o7
An — A2 \/E%»]. 71'()\*)771'(/\2)

B
|
-
A
>
b
|
2
™
>




Example: Convection—Diffusion Problem

2d Convection-diffusion problem, n = 160,000; moderately nonnormal.

We seek 15 eigenvalues with a buffer of 5 eigenvalues for restarted Arnoldi,
and a maximum subspace dimension of 50: Arnoldi(50,20).

Results averaged over 10 trial runs.
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Three Ways to Improve Stability

The basic algorithm is very simple, but several minor adjustments can improve
its applicability and reliability.

» Distant eigenvalues of A lead to isolated roots of ,
which can complicate the evaluation of m(A)v.

» Polynomials that oscillate too much over the spectrum can mix up
the desired and undesired eigenvalues of 7(A).

» A poor choice of b could have small components in the desired
eigenvectors. (Easy fix: see the paper for details.)



Handle Outlying Eigenvalues by Duplicating Roots

GMRES quickly puts roots very close to isolated “outlier” eigenvalues,
but such roots can cause problems due to large 7'(\) behavior.
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Handle Outlying Eigenvalues by Duplicating Roots

GMRES quickly puts roots very close to isolated “outlier” eigenvalues,

but such roots can cause problems due to large 7'(\) behavior.
Remedy: Add an extra copy (or more) of the problematic root.
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Handle Outlying Eigenvalues by Duplicating Roots

GMRES quickly puts roots very close to isolated “outlier” eigenvalues,

but such roots can cause problems due to large 7'(\) behavior.
Remedy: Add an extra copy (or more) of the problematic root.
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Handle Outlying Eigenvalues by Duplicating Roots

When should you add extra roots, and how many should you add?

How large would 7(6;) be, were it not for the (1 — z/6;) term?
We define the product of other factors (pof) of the jth root:

d

pof(j):= [ |1

i=1,i#]

I (6,)] - 16;.

Rule of thumb (for double precision computations):

Add [W-‘ additional (1 - 9—> factors to m(z).

i



Damping to Enhance Smallest Magnitude Eigenvalues

For some spectral distributions, larger d can give 7 that are “over-enthusiastic”.
Oscillations near the origin mix up the order of eigenvalues in o(7(A)).
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Taming Over-Enthusiastic Polynomials with Damping

For some spectral distributions, larger d can give 7 that are “over-enthusiastic”.
Oscillations near the origin mix up the order of eigenvalues in o(7(A)).

Suppose A is diagonalizable, having eigenvectors vi, ..., v,.

» Let vi,..., Vv, be a basis of eigenvectors of A, and write

b=> (9)v
j=1
» Then .
ab=3 o)y,
j=1

Premultiplying by A damps the components of b associated with the
smallest magnitude eigenvalues.

> Generate 7 by applying GMRES to (A, Ab) instead of (A, b).

» Compare to damping Gibbs phenomenon in Dirac filters in
[Li, Xi, Vecharynski, Yang, Saad 2016]



Damping to Enhance Smallest Magnitude Eigenvalues

For some spectral distributions, larger d can give 7 that are “over-enthusiastic”.
Oscillations near the origin mix up the order of eigenvalues in o(7(A)).
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Damping to Enhance Smallest Magnitude Eigenvalues

An example from SuiteSparse:

S1rmg4ml (n = 5489, symmetric positive definite)

Degree d = 30 polynomial is over-enthusiastic (red +).

Damping (generating m with GMRES on (A, Ab)) fixes the problem (black x).
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Double Polynomial Preconditioning

For large d, the GMRES run to form 7 can incur many dot products.

Here is a strategy to leverage very high powers of A with fewer dot products.

» Form the GMRES polynomial 71 of degree di for (A, b).
The desired eigenvalues of 7(A) should be near 1.

» Define the matrix 7(A) = | — 7(A).
The desired eigenvalues of 7(A) should be near 0.

» Form the GMRES polynomial 7, of degree d for (7(A), b).
The desired eigenvalues of m2(7(A)) should be near 1.

» Run restarted Arnoldi on m2(7(A)) = m(I — m1(A)).
Notice that m2(1 — m1(2z)) is a degree did> polynomial.



Double Polynomial Preconditioning: Example

2d Convection—Diffusion problem, n = 640,000.

degree cycles matvecs time dot products
dord xdo (thousands) | (minutes) | (thousands)
Polynomial Preconditioned Arnoldi
0 6924.5 207.8 243.4 15999.9
10 253.2 76.6 19.4 561.9
25 82.7 63.0 11.3 185.1
50 41.2 63.6 9.7 95.4
100 20.6 64.8 9.2 57.8
125 16.5 65.3 8.8 56.3
150 14.0 67.0 9.1 60.4
Double Polynomial Preconditioning
15 x 20 = 300 3.8 41.0 1.4 9.7
15 x 40 = 600 2.0 48.9 1.6 6.9
15 x 50 = 750 2.0 61.2 2.0 7.9
25 x 40 = 1000 1.0 51.0 1.6 5.2
25 x 60 = 1500 1.0 76.5 2.4 8.0
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2d Convection—Diffusion problem, n = 640,000.
Run Arnoldi(50,20) to compute the smallest 15 eigenvalues.

degree cycles matvecs time dot products
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Summary

Polynomial Preconditioning for Eigenvalue Computations
Using the GMRES Residual Polynomial

» The GMRES residual polynomial can be an appealing choice of
precondition for Arnoldi eigenvalue computations.

» This choice of 7 adapts naturally to nonnormality and does not require
an initial estimate of the spectrum.

» Good choices of 7 can reduce the matrix-vector products, dot products,
Arnoldi iterations, and computation time.

» Simple modifications can address stability considerations:
duplicating tricky roots, damping b, using multiple b.

» Double polynomial preconditioning gives access to very high powers of A,
and can be especially helpful for minimizing dot products.



