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Linear and Nonlinear Eigenvalues Problems: A Simple String

Consider the wave equation on 0 ≤ x ≤ 1

utt(x , t) = uxx (x , t)

with the boundary conditions

u(0, t) = 0, u(1, t) = ux (1, t).

Solve by expanding u(·, t) in eigenfunctions, which must have the form

v ′′(x) = λv(x) =⇒ v(x) = A sin(λx) + B cos(λx)

Left boundary condition:

v(0) = 0 =⇒ v(x) = A sin(λx)

Right boundary condition:

v(1) = v ′(1) =⇒ sin(λ) = λ cos(λ)
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Linear and Nonlinear Eigenvalues Problems: A Simple String

Shooting function: Eigenvalues λ are positive numbers that satisfy

sin(λ) = λ cos(λ)
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A scalar nonlinear eigenvalue problem (n = 1) with infinitely many eigenvalues.

How can we best find these (leftmost) eigenvalues ?

I Newton’s method for each root
I Linearization via polynomial approximation
I Other ideas . . .



Linear and Nonlinear Eigenvalues Problems: A Simple String

sin(λ) = λ cos(λ)

Approximate the nonlinear functions using polynomials, e.g.,(
λ− λ3

3! + λ5

5!

)
≈ λ

(
1− λ2

2! + λ4

4!

)
Find roots of the polynomial equation

0 = p(λ) = λ5 − c4λ
4 − c3λ

3 − c2λ
2 − c1λ− c0.

Companion “linearization” gives a linear eigenvalue problem Av = λv with, e.g.,

A =


1

1
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Nonlinear Eigenvalue Problems: Stability of Delay Systems

Consider the simple scalar delay differential equation
x ′(t) = −x(t − 1).

Substituting the ansatz x(t) = eλt yields the nonlinear eigenvalue problem
T (λ) = 1 + λeλ = 0.

32 (of infinitely many) eigenvalues of T for this scalar (n = 1) equation:
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eigenvalues derived from
the Lambert-W function

See, e.g., [Michiels & Niculescu 2007]



Nonlinear Eigenvalue Problems: Stability of Delay Systems

Consider the system of delay differential equations

Ex′(t) = Ax(t) + Bx(t − 1).

Substituting the ansatz x(t) = eλtv yields the nonlinear eigenvalue problem

T(λ)v =
(
A− λE + e−λB

)
v = 0.
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See, e.g., [Michiels & Niculescu 2007]



Nonlinear Eigenvalue Problems (NLEVP)

We seek eigenvalues of the nonlinear eigenvalue problem

T(λ)v =
( d∑

k=0

fk (λ)Ck

)
v = 0

in some compact region Ω ⊆ C.

I Helpful NLEVP surveys:
Mehrmann & Voss, GAMM, [2004]
Voss, Handbook of Linear Algebra, [2014]
Güttel & Tisseur, Acta Numerica survey [2017]

I Software resources include:
NLEVP test collection [Betcke, Higham, Mehrmann, Schröder, Tisseur 2013]
SLEPC contains NLEVP algorithm implementations [Roman et al.]

I Many algorithms based on Newton’s method, polynomial and rational
approximation of the fk ’s, projection, contour integration, etc.
Incomplete list of contributors: Asakura, Bai, Betcke, Beyn, Effenberger, Gavin,
Güttel, Ikegami, Jarlebring, Kimura, Kressner, Leitart, Meerbergen, Michiels,
Miedlar, Niculescu, Pérez, Polizzi, Sakurai, Tadano, Tisseur, Van Barel, Van
Beeumen, Vandereycken, Voss, Yokota, . . . .
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Plan for the Talk

We seek m eigenvalues of T(z)
contained within the bounded region Ω ⊂ C.
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Here we seek the m = 11 eigenvalues in the blue ellipse, Ω.



Plan for the Talk

We seek m eigenvalues of T(z)
contained within the bounded region Ω ⊂ C.

I Keldysh’s Theorem and contour integration

I Fundamental algorithm:
contour integration =⇒

moments =⇒
Hankel matrices =⇒

eigenvalues

I Interpretation as realization of associated dynamical systems

I Extensions based on Loewner matrix interpolation:
– Moment matching at a finite z =∞
– Tangential interpolation at multiple complex points

Key technology: rational interpolation theory of Mayo and Antoulas [2007]



Hankel Contour Integral Method

for the

Nonlinear Eigenvalue Problems



Keldysh’s Theorem: locally, the problem looks linear

Theorem [Keldysh 1951]. Suppose T(z) has m eigenvalues λ1, . . . , λm
(counting multiplicity) in the bounded region Ω ⊂ C, all semi-simple. Then

T(z)−1 = V(zI− Λ)−1W∗ + N(z),
• V = [v1 · · · vm], W = [w1 · · · wm], Λ = diag(λ1, . . . , λm), w∗j T′(λj )vj = 1;
• N(z) is analytic in Ω.

V

(z I−Λ)−1 W∗

N(z)T(z)−1 = +

H(z) := V(z I− Λ)−1W∗

n × n rational matrix function
m poles in Ω

nonlinear function,
but analytic in Ω



Keldysh’s Theorem: locally, the problem looks linear

V

(z I−Λ)−1 W∗

N(z)T(z)−1 = +

H(z) := V(z I− Λ)−1W∗

n × n rational matrix function
m poles in Ω

nonlinear function,
but analytic in Ω

Goal: Use samples of T(zj )−1 (or L∗T(zj )−1R) to discover H(z),
and hence Λ ∈ Cm×m and (ideally) eigenvector matrices V,W ∈ Cn×m.



Contour integration exposes the linear part

V

(z I−Λ)−1 W∗

N(z)T(z)−1 = +

H(z) := V(z I− Λ)−1W∗ analytic in Ω

For any f analytic on Ω,

1
2πi

∫
∂Ω

f (z)T(z)−1 dz = 1
2πi

∫
∂Ω

f (z)V(zI− Λ)−1W∗ dz + 1
2πi

∫
∂Ω

f (z)N(z) dz

= 1
2πi

∫
∂Ω

f (z)V(zI− Λ)−1W∗ dz

= Vf (Λ)W∗.



Expedite calculation via sampling, trapezoid rule

1
2πi

∫
∂Ω

f (z)T(z)−1 dz = Vf (Λ)W∗ ∈ Cn×n.

I Reduce dimension via sampling (sketching)
For L ∈ Cn×` and R ∈ Cn×r (e.g., random), compute

1
2πi

∫
∂Ω

f (z) L∗T(z)−1R dz = L∗Vf (Λ)W∗R ∈ C`×r .

I Approximate the integral using the trapezoid rule

1
2πi

∫
∂Ω

f (z) L∗T(z)−1R dz ≈
N∑

j=0

wj f (ζj ) L∗T(ζj )−1R.

– The terms L∗T(ζj )−1R ∈ C`×r can be computed in parallel
– Once these terms have been computed, easy to use different f .



Motivating idea for the algorithms in this talk

We seek the m eigenvalues of T(z) in Ω.

I Keldysh’s Theorem + contour integration of T(z)−1 = H(z) + N(z)
gives access to H(z) (or L∗H(z)R)

I H(z) : C→ Cn×n is a rational matrix function of McMillan degree m

I Can we use O(m) samples of H(z) (or L∗H(z)R) to discover
the rational function H(z) (or realize an associated dynamical system)
via interpolation/approximation ?



Contour integration method for NLEVPs

I [Asakura, Sakurai, Tadano, Ikegami, Kimura 2009] and [Beyn 2012]
proposed several influential algorithms based on the choice f (z) = z j ,
analogous to the Sakurai–Sugiura method for linear eigenvalue problems.
Filter function enhancement: [Van Barel, Kravanja 2016] and [Van Barel 2016].

I See [Güttel, Tisseur 2017] for a presentation and numerical experiments.

I These algorithms have potential for development into black-box software
for the nonlinear eigenvalue problem; see [Porzio,Tisseur, ICIAM 2019].

The basic algorithm uses

f (z) ≡ 1, A0 = 1
2πi

∫
∂Ω

L∗T(z)−1R dz = L∗VW∗R,

f (z) = z, A1 = 1
2πi

∫
∂Ω

z L∗T(z)−1R dz = L∗VΛW∗R.

One could then analyze the `× r rectangular matrix pencil
zA0 − A1 = zL∗VW∗R− L∗VΛW∗R = L∗V(zI− Λ)W∗R.
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Basic contour integration method for NLEVPs

Instead of analyzing the pencil zA0 − A1 = L∗V(zI− Λ)W∗R,
compress to an m ×m matrix and solve a standard linear eigenvalue problem.
Rank condition

rank(L∗V) = rank(W∗R) = rank(A0) = m

Reduced SVD of A0
A0 = XΣY∗

Rank condition implies range(L∗V) = range(X), hence invertible S ∈ Cm×m with

L∗V = XS =⇒ Σ = X∗L∗VW∗RY = SW∗RY

Reduction to m × m matrix eigenvalue problem

B := X∗A1YΣ−1

= X∗(L∗VΛW∗R)YΣ−1

= X∗(L∗V)Λ(S−1S)(W∗R)YΣ−1

= X∗(XS)ΛS−1(SW∗RY)Σ−1 = SΛS−1
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A simple example

The delay differential equation

x′(t) =
[
−1/4 0

0 −2

]
x(t − 1)

leads to the NLEVP

T(z) =
[
−1/4 + zez 0

0 −2 + zez

]
.
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Basic algorithm:

A0 = XΣY∗, B = X∗A1YΣ−1 = SΛS−1, L∗V = XS

Integrate around ∂Ω = unit circle with L = R = I to get

A0 = 1
2π i

∫
∂Ω

[ 1
−1/4+zez 0

0 1
−2+zez

]
dz =

[
2.22474 0

0 0

]
,

A1 = 1
2π i

∫
∂Ω

[ z
−1/4+zez 0

0 z
−2+zez

]
dz =

[
−0.79513 0

0 0

]
.
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A simple example

T(z) =
[
−1/4 + zez 0

0 −2 + zez

]
.

-10 0 10

-15

-10

-5

0

5

10

15

A0 = 1
2π i

∫
∂Ω

[ 1
−1/4+zez 0

0 1
−2+zez

]
dz =

[
2.22474 0

0 0

]
A1 = 1

2π i

∫
∂Ω

[ z
−1/4+zez 0

0 z
−2+zez

]
dz =

[
−0.79513 0

0 0

]

Basic algorithm: A0 = XΣY∗, B = X∗A1YΣ−1 = SΛS−1, L∗V = XS

A0 = XΣY∗ =
[

1
0

]
[2.22474]

[
1 0

]
B = X∗A1YΣ−1 = −0.79513

2.22474 = −0.35740 = SΛS−1

V = L∗V = XS =
[

1
0

]



Basic contour integration method for NLEVPs

Basic algorithm:

A0 = XΣY∗, B = X∗A1YΣ−1 = SΛS−1, L∗V = XS

If L = I, recover V = XS; otherwise, use inverse iteration for eigenvectors.

What could go wrong?

I Dimension n could be smaller then the number of eigenvalues m.
I Rank condition fails for poor choices of L and R.
I Rank condition fails for linearly dependent eigenvectors in V and W,

including (but not limited to) derogatory multiple eigenvalues.
I Rank of A0 might be difficult to detect (complicated by quadrature errors).

Remedy: Incorporate higher moments

f (z) = zk , Ak = 1
2πi

∫
∂Ω

zk L∗T(z)−1R dz = L∗VΛkW∗R

These moments are easy to compute from the same data used for A0 and A1.
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Embed higher moments in Hankel Matrices

I Let L ∈ Cn×` and R ∈ Cn×r for `, r � n.
I Compute Ak = L∗VΛkW∗R ∈ C`×r , using the trapezoid rule, f (z) = zk .
I Pick some K ≥ 1 and form the block Hankel matrices

H =


A0 A1 · · · AK−1
A1 A2 · · · AK
...

... . .
. ...

AK−1 AK · · · A2K−2

 , Hs =


A1 A2 · · · AK
A2 A3 · · · AK+1
...

... . .
. ...

AK AK+1 · · · A2K−1

 .

The block Hankel matrices can be factored as

H = VW
∗, Hs = VΛW∗,

V =


L∗V

L∗VΛ
...

L∗VΛK−1

 ∈ CK`×m, W∗ =
[

W∗R ΛW∗R · · · ΛK−1W∗R
]
∈ Cm×Kr .

Rank condition
rank(V) = rank(W) = rank(H) = m
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Singular values of H reveal m. . .

In all cases here, we seek m = 5 eigenvalues in the unit circle.
The parameter N shows the number of trapezoid rule points.
We use ` = r = 1 sampling direction.
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desired eigenvalues are well separated
undesired eigenvalues are far from Ω
rank(H) = 5 is clear

1 2 3 4 5 6 7 8 9 10
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100

desired eigenvalues are tightly clustered
undesired eigenvalues are far from Ω
rank(H) = 5 is unclear
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The parameter N shows the number of trapezoid rule points.
We use ` = r = 1 sampling direction.
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undesired eigenvalues are far from Ω
eigenvectors missing with ` = r = 1
rank(H) = 1 is clear
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desired eigenvalues for a Jordan block
undesired eigenvalues are far from Ω
Jordan block discovered with ` = r = 1
rank(H) = 5 is clear



Singular values of H reveal m. . .

In all cases here, we seek m = 5 eigenvalues in the unit circle.
The parameter N shows the number of trapezoid rule points.
We use ` = r = 1 sampling direction.
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desired eigenvalues are well separated
one undesired eigenvalue near Ω (λ = 1.01)
trapezoid rule is slow to converge
rank(H) = 5 is not clear
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desired eigenvalues are well separated
all undesired eigenvalue near Ω (|λ| = 1.1)
trapezoid rule is slow to converge
rank(H) = 5 is not clear



Contour methods for NLEVPs via Hankel matrices

H =

 A0 A1 · · · AK−1
A1 A2 · · · AK
...

... . .
. ...

AK−1 AK · · · A2K−2

 , Hs =

 A1 A2 · · · AK
A2 A3 · · · AK+1
...

... . .
. ...

AK AK+1 · · · A2K−1

 .
Rank condition

rank(V) = rank(W) = rank(H) = m

Reduced SVD of H
H = XΣY∗

Reduction to m × m matrix eigenvalue problem

B := X∗HsYΣ−1 = SΛS−1,

perfectly generalizing the K = 1 case,

B := X∗A1YΣ−1 = SΛS−1.



A simple example, revisited

T(z) =
[
−1/4 + zez 0

0 −2 + zez

]
.
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Enlarge Ω to contain m = 3 eigenvalues (so m > n).

H =
[

A0 A1
A1 A2

]
=

[ 2.2247 0 −0.7951 0
0 −0.7192 0 0.5464

−0.7951 0 0.2842 0
0 0.5464 0 2.225

]

Basic algorithm: H = XΣY∗, B = X∗HsYΣ−1 = SΛS−1, V = XS

Σ = (singular values of H) =

[ 2.5089
2.3231

0.8173

]

Λ = (eigenvalues of B) =

[ −0.3574
0.1728 + 1.6738i

0.1728− 1.6738i

]
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Hankel NLEVP Algorithm

from a

Systems Theory Perspective



A dynamical system associated with the Hankel method

Consider the dynamical system

x′(t) = Λ x(t) + W∗R u(t)
y(t) = L∗V x(t).

The Laplace transform gives (for x(0) = 0)

s(Lx)(s) = Λ(Lx)(s) + W∗R(Lu)(s)

(Ly)(s) = L∗V(Lx)(s),

which we write as

(Ly)(s) =
(

L∗V(sI− Λ)−1W∗R
)

(Lu)(s).

We call
H̃(s) := L∗V(sI− Λ)−1W∗R

the transfer function for the dynamical system.



A dynamical system associated with the Hankel method

x′(t) = Λ x(t) + W∗R u(t)
y(t) = L∗V x(t)

H̃(z) = L∗V(zI− Λ)−1W∗R

Expand H̃(z) about z =∞:

H̃(z) =
∞∑

k=0

1
zk+1 Ak =

∞∑
k=0

1
zk+1 L∗VΛkW∗R.

In the language of systems theory, the Hankel contour integral algorithm seeks
to realize the dynamical system from a finite set of its moments.

Realization Problem (z =∞) for sampled system
Given the 2K moments

Ak = L∗VΛkW∗R, k = 0, . . . , 2K − 1,

recover the system matrices Λ, L∗V, and W∗R.



A dynamical system associated with the Hankel method

Realization Problem (z =∞) for sampled system
Given the 2K moments

Ak = L∗VΛkW∗R, k = 0, . . . , 2K − 1,

recover the system matrices Λ, L∗V, and W∗R.

I The rank condition rank(V) = rank(W) = rank(H) = m amounts to
observability and reachability of the H̃(z) dynamical system.

I The basic algorithm

H = XΣY∗, B = X∗HsYΣ−1 = SΛS−1, L∗V = XS

seeks an order-m realization of the dynamical system.

I This method resembles the Ho–Kalman method [1966], [De Schutter 2000]
for constructing a minimum realization of the system.
The SVD gives an especially appealing choice of basis transformation.
(Cf. the Silverman realization algorithm [1971], another Hankel method.)



A dynamical system for the full linear part of T(z)

Alternatively, consider the dynamical system without sampling

x′(t) = Λ x(t) + W∗ u(t)
y(t) = V x(t)

H(z) = V(zI− Λ)−1W∗.

Expand this transfer function in (unsampled ) moments Mk := VΛkW∗:

H(z) =
∞∑

k=0

1
zk+1 Mk =

∞∑
k=0

1
zk+1 VΛkW∗.

Realization Problem (z =∞) for full system
Given 2K tangentially sampled moments

L∗Mk = L∗VΛkW∗, MkR = VΛkW∗R,

for k = 0, . . . , 2K − 1, recover the system matrices Λ, V, and R.



Realizing the full linear part of T(z)

Realization Problem (z =∞) for full system
Given 2K tangentially sampled moments

L∗Mk = L∗VΛkW∗, MkR = VΛkW∗R,

for k = 0, . . . , 2K − 1, recover the system matrices Λ, V, and R.

I Construct the one-sided data matrices

B :=


L∗M0
L∗M1
...

L∗MK−1

 ∈ C`K×n, C := [ M0R M1R · · · MK−1R ] ∈ Cn×rK .

I Compute the SVD of the usual Hankel matrix H (blocks Ak = L∗MkR):

H = XΣY∗.

I Under suitable rank conditions cf. [Mayo, Antoulas 2007]:

H(z) = CY(zΣ− X∗HsY)−1X∗B.



Realizing the full linear part of T(z)

B :=


L∗M0
L∗M1
...

L∗MK−1

 ∈ C`K×n, C := [ M0R M1R · · · MK−1R ] ∈ Cn×rK .

H = XΣY∗.

Using the same diagonalization X∗HsYΣ−1 = SΛS−1,

H(z) = CY(zΣ− X∗HsY)−1X∗B

=
(
CYΣ−1)(zI− X∗HsYΣ−1)−1(X∗B)

=
(
CYΣ−1S

)(
zI− Λ

)−1(S−1X∗B
)

giving a realization of the full dynamical system with H(z) = V(z − Λ)−1W∗,
and access to the eigenvalues and left and right eigenvectors of T(z).



Rational NLEVP Algorithms

motivated by

System Realization



Realization based on data from a single point

H(z) = V(zI− Λ)−1W∗

The contour integral method uses the expansion of H(z) at z =∞:

H(z) =
∞∑

k=0

1
zk+1 Mk =

∞∑
k=0

1
zk+1 VΛkW∗.

What if we prefer to expand about a finite point z = σ ∈ C, z 6∈ Ω ?

H(z) =
∞∑

k=0

( 1
k! H(k)(σ)

)
(z − σ)k =

∞∑
k=0

Mk (z − σ)k

Sample the n × n moments

Mk = 1
k! H(k)(σ) ∈ Cn×n

in the L and R directions via contour integration with special f ; e.g.,

MkR = 1
2πi

∫
∂Ω

(−1)k

(σ − z)k+1 T(z)−1R dz.



Realization based on data from a single point

The rational interpolation/realization theory of Mayo and Antoulas [2007]
recovers H(z). Arrange the data as

B :=

 L∗M0
L∗M1
...

L∗MK−1

 ∈ C`K×n, C := [ M0R M1R · · · MK−1R ] ∈ Cn×rK ,

L0 :=

 L∗M0R · · · L∗MK−1R
L∗M1R · · · L∗MK R

... . .
. ...

L∗MK−1R · · · L∗M2K−2R

 , L :=

 L∗M1R · · · L∗MK R
L∗M2R · · · L∗MK+1R

... . .
. ...

L∗MK R · · · L∗M2K−1R

 ,
and define Ls = σL− L0.

With reduced SVD L0 = −XΣY∗

we can recover the full transfer function as

H(z) = CY(X∗LsY− zX∗LY)−1X∗B

under suitable rank conditions.



Realization based on data from a single point

The rational interpolation/realization theory of Mayo and Antoulas [2007]
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. ...
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 , L :=

 L∗M1R · · · L∗MK R
L∗M2R · · · L∗MK+1R

... . .
. ...

L∗MK R · · · L∗M2K−1R

 ,
and define Ls = σL− L0.

With reduced SVD L0 = −XΣY∗

we can recover the full transfer function as

H(z) = CY(X∗LsY− zX∗LY)−1X∗B

under suitable rank conditions.



Incorporating tangential data at multiple points

So far we have recovered H(z) = V(zI− Λ)−1W∗ using high-order data
at a single point (z =∞ or z = σ).
We can also incorporate low-order data from multiple points.

I Select r interpolation points and directions:
right points, directions: θ1, . . . , θr ∈ C \ Ω, r1, . . . , rr ∈ Cn

left points, directions: µ1, . . . , µr ∈ C \ Ω, `1, . . . , `r ∈ Cn

I We seek to interpolate left and right tangential data:
right interpolation data: f1 = H(θ1)r1, . . . , fr = H(θr )rr

left interpolation data: g∗1 = `∗1 H(µ1), . . . , g∗r = `∗r H(µr )

Realization Problem w/multi-point data for full system
Given 2r tangential samples {fj = H(θj )rj}r

j=1 and {g∗j = `∗j H(µj )}r
j=1,

recover the system matrices Λ, V, and W.



Incorporating tangential data at multiple points

So far we have recovered H(z) = V(zI− Λ)−1W∗ using high-order data
at a single point (z =∞ or z = σ).
We can also incorporate low-order data from multiple points.

I Select r interpolation points and directions:
right points, directions: θ1, . . . , θr ∈ C \ Ω, r1, . . . , rr ∈ Cn

left points, directions: µ1, . . . , µr ∈ C \ Ω, `1, . . . , `r ∈ Cn

I We seek to interpolate left and right tangential data:
right interpolation data: f1 = H(θ1)r1, . . . , fr = H(θr )rr

left interpolation data: g∗1 = `∗1 H(µ1), . . . , g∗r = `∗r H(µr )

Realization Problem w/multi-point data for full system
Given 2r tangential samples {fj = H(θj )rj}r

j=1 and {g∗j = `∗j H(µj )}r
j=1,

recover the system matrices Λ, V, and W.



Compute tangential data via contour integration

Realization Problem w/multi-point data for full system
Given 2r tangential samples {fj = H(θj )rj}r

j=1 and {g∗j = `∗j H(µj )}r
j=1,

recover the system matrices Λ, V, and W.

Contour integration also gives access to this data (via the trapezoid rule):

fj := H(θj )rj = 1
2πi

∫
∂Ω

1
θj − z T(z)−1rj dz

g∗j := `∗j H(µj ) = 1
2πi

∫
∂Ω

1
µj − z `∗j T(z)−1 dz.

Note: fj and gj are one-sided data, like MkR and L∗Mk in the Hankel setting.



Organize the data into Loewner matrices

Given right points, directions: θ1, . . . , θr ∈ C, r1, . . . , rr ∈ Cn

left points, directions: µ1, . . . , µr ∈ C, `1, . . . , `r ∈ Cn

Compute right interpolation data: f1 = H(θ1)r1, . . . , fr = H(θr )rr

left interpolation data: g∗1 = `∗1 H(µ1), . . . , g∗r = `∗r H(µr )

L =


g∗1 r1 − `∗1 f1
µ1 − θ1

· · · g∗1 rr − `∗1 fr
µ1 − θr

...
. . .

...

g∗r r1 − `∗r f1
µr − θ1

· · · g∗r rr − `∗r fr
µr − θr

 ∈ Cr×r

Ls =


µ1g
∗
1 r1 − θ1`∗1 f1
µ1 − θ1

· · · µ1g
∗
1 rr − θr `∗1 fr
µ1 − θr

...
. . .

...

µrg
∗
r r1 − θ1`∗r f1
µr − θ1

· · · µrg
∗
r rr − θr `∗r fr
µr − θr

 ∈ Cr×r

F = [ f1, . . . , fr ] ∈ Cn×r

G = [g1, . . . ,gr ] ∈ Cn×r

Loew
ner

m
atrix

shifted
Loew

ner
m

atrix



Rank of Loewner matrices reveal m

The rank of L and Ls reveal the number of eigenvalues m in Ω
(the McMillan degree of H(z)), but the singular values of the Loewner matrices
depend on the choice of the interpolation points.
Example: system of degree m = 10; Loewner matrices have dimension r = 20.
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10-5

100

105

Singular values clearly reveal that the system has order m = 10.



Rank of Loewner matrices reveal m

The rank of L and Ls reveal the number of eigenvalues m in Ω
(the McMillan degree of H(z)), but the singular values of the Loewner matrices
depend on the choice of the interpolation points.
Example: system of degree m = 10; Loewner matrices have dimension r = 20.

0 2 4 6 8 10 12 14 16 18 20
10-20

10-15

10-10

10-5

100

105

Same system, only interpolation points differ. What is the rank?



Two key Sylvester equations

Θ =

 θ1
. . .

θr

∈Cr×r , R =

[
r1 · · · rr

]
∈Cn×r , F =

[
f1 · · · fr

]
∈Cn×r

M =

 µ1
. . .

µr

∈Cr×r , L =

[
`1 · · · `r

]
∈Cn×r , G =

[
g1 · · · gr

]
∈Cn×r

By construction, the Loewner matrices L and Ls solve the Sylvester equations

LΘ−ML = L∗F −G
∗R, LsΘ−MLs = L∗FΘ−MG

∗R

which (typically) have right-hand sides with low rank.

L =


g∗1 r1 − `∗1 f1
µ1 − θ1

· · ·
g∗1 rr − `∗1 fr
µ1 − θr

...
. . .

...

g∗r r1 − `∗r f1
µr − θ1

· · · g∗r rr − `∗r fr
µr − θr

 , Ls =


µ1g
∗
1 r1 − θ1`∗1 f1
µ1 − θ1

· · ·
µ1g
∗
1 rr − θr `∗1 fr
µ1 − θr

...
. . .

...

µrg
∗
r r1 − θ1`∗r f1
µr − θ1

· · · µrg
∗
r rr − θr `∗r fr
µr − θr





Two key Sylvester equations

Θ =

 θ1
. . .

θr

∈Cr×r , R =

[
r1 · · · rr

]
∈Cn×r , F =

[
f1 · · · fr

]
∈Cn×r

M =

 µ1
. . .

µr

∈Cr×r , L =

[
`1 · · · `r

]
∈Cn×r , G =

[
g1 · · · gr

]
∈Cn×r

By construction, the Loewner matrices L and Ls solve the Sylvester equations

LΘ−ML = L∗F −G
∗R, LsΘ−MLs = L∗FΘ−MG

∗R

which (typically) have right-hand sides with low rank.

I Penzl [1999] observed that (for Lyapunov equations)
low-rank right-hand sides often imply rapid decay of singular values of L.

I Decay bounds depends on the relative location of the spectra of Θ and M
[Penzl, 1999], [Antoulas, Sorensen, Zhou, 2002], [Baker, E., Sabino, 2015],
[Beckermann & Townsend, 2017], . . . .



Insufficient data? Construct an interpolant.

Suppose we have r < m measurements, and rank(L) = rank(Ls) = r .
Then construct the reduced model

Hr (z) := F (Ls − zL)−1G∗ : C→ Cn×n.

The resulting degree-r model interpolates the right and left data:

Hr (θj )rj = H(θj )rj = fj , `∗j Hr (µj ) = `∗j H(µj ) = g∗j

for j = 1, . . . , r .

While the poles of Hr (z) will not generally match the eigenvalues of T(z),
they could provide helpful approximations, especially if the directions rj and `j
approximate eigenvectors.



Sufficient data? Recover H(z).

Define the reachability and observability matrices

R =
[

(θ1I− Λ)−1W∗r1 · · · (θr I− Λ)−1W∗rr
]
∈ C

n×r
, O =

[
`∗

1 V(µ1I− Λ)−1

...

`∗
r V(µr I− Λ)−1

]
∈ C

r×n

Rank condition

rank(R) = rank(O) = rank(L) = m ≤ r

Compute two reduced SVDs (rank m)[
L Ls

]
= XΣ1Y∗1 ,

[
L

Ls

]
= X2Σ2Y∗,

for X,Y ∈ Cr×m.
Construct reduced model

L̃ := X∗LY ∈ Cm×m
L̃s := X∗LsY ∈ Cm×m

F̃ := FY ∈ Cn×m
G̃ := GX ∈ Cn×m



Sufficient data? Recover H(z).

Rank condition

rank(R) = rank(O) = rank(L) = m ≤ r

Compute two reduced SVDs (rank m)[
L Ls

]
= XΣ1Y∗1 ,

[
L

Ls

]
= X2Σ2Y∗,

for X,Y ∈ Cr×m.
Construct reduced model

L̃ := X∗LY ∈ Cm×m
L̃s := X∗LsY ∈ Cm×m

F̃ := FY ∈ Cn×m
G̃ := GX ∈ Cn×m

Recover the transfer function

H(z) = F̃ (L̃s − zL̃)−1
G̃
∗

Reduction to m ×m matrix eigenvalue problem

B := L̃s L̃
−1 = (X∗LsY)(X∗LsY)−1 = SΛS−1,

analogous to the earlier B = X∗HsYΣ−1.



Computational examples

Example. T(λ) = λI− A− e−λI,
where A is symmetric with n = 1000; eigenvalues of A = {−1,−2, . . . ,−n}.
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Computational examples

Example. T(λ) = λI− A− e−λI,
where A is symmetric with n = 1000; eigenvalues of A = {−1,−2, . . . ,−n}.

1 2 3 4 5 6 7 8 9 10
10-20

10-15

10-10

10-5

100

25 50 100 200
10-14

10-12

10-10

10-8

10-6

10-4

10-2

j

jt
h

sin
gu

la
r

va
lu

e
of

L

N

ei
ge

nv
al

ue
er

ro
r,
|λ

j
−
λ

(N
)

j
|

6

4 eigenvalues in Ω
⇒ rank(L) = 4

Cf. [Beyn 2012], [Güttel & Tisseur 2017] for f (z) = zk .



Example: T(λ) = λI − e−λA

I A is symmetric with n = 100; eigenvalues of A = {−1,−2, . . . ,−n}
I Compare maxj ‖T(λj )vj‖2/‖vj‖ for j = 1, 2, . . . , 5
I m = 5 eigenvalues in Ω, r = 10 left and right samples
I random search directions R = [r1, . . . , r10] and L = [`1, . . . , `10]
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Example: T(λ) = λI − e−λA

I A is symmetric with n = 100; eigenvalues of A = {−1,−2, . . . ,−n}
I Compare maxj ‖T(λj )vj‖2/‖vj‖ for j = 1, 2, . . . , 5
I m = 5 eigenvalues in Ω, r = 10 left and right samples
I approximate eigenvector directions R = [r1, . . . , r10] and L = [`1, . . . , `10]
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Example: T(λ) = λI − e−λA

I A is symmetric with n = 100; eigenvalues of A = {−1,−2, . . . ,−n}
I Compare maxj ‖T(λj )vj‖2/‖vj‖ for j = 1, 2, . . . , 5
I m = 5 eigenvalues in Ω, r = 10 left and right samples
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Example: T(λ) = λI − e−λA

I A is symmetric with n = 100; eigenvalues of A = {−1,−2, . . . ,−n}
I Compare maxj ‖T(λj )vj‖2/‖vj‖ for j = 1, 2, . . . , 5
I m = 5 eigenvalues in Ω, r = 10 left and right samples
I approximate eigenvector directions R = [r1, . . . , r10] and L = [`1, . . . , `10]
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Conclusion

Contour integral algorithms are a rich and promising class of techniques for
solving nonlinear eigenvalue problems, especially when one knows a target
region Ω containing a modest number of eigenvalues.

We have described how these recent developments in numerical linear algebra
connect to adjacent developments in systems realization theory.

This connection suggests several natural ways to expand the class of contour
integration methods, suggesting avenues for new algorithm designs.



Conclusion

This connection suggests several natural ways to expand the class of contour
integration methods, suggesting avenues for new algorithm designs.

Numerous questions remain to be explored.

I How should we optimally choose the number of sampling directions, r?

I How do the sampling directions r1, . . . , rr and `1, . . . , `r affect convergence?

I How does convergence of the quadrature rule depend on:
– the choice of interpolation points θj and µj ?
– the distance of the contour from eigenvalues outside Ω ?

I How does the numerical rank of L depend on the quadrature accuracy,
interpolation points ?
This question has close connections to Loewner system realization with
noisy measurements. Recent work by [Hokanson], [Drmac & Peherstorfer],
[E. & Ionita], [Gosea & Antoulas], . . . .



Pseudospectra of Loewner pencils

Pole sensitivity depends on the location/ partitioning of interpolation points. . .

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10

-9.75

-9.5

-9.25

-9

-8.75

-8.5

-8.25

-8

-7.75

-7.5

-7.25

-7

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10

-9.75

-9.5

-9.25

-9

-8.75

-8.5

-8.25

-8

-7.75

-7.5

-7.25

-7

[E. & Ionita, arXiv 1910.12153]


