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setting for the talk

I Let A ∈ Cn×n be a large square matrix, potentially non-Hermitian (A 6= A∗).

I Computing all eigenvalues of A is too expensive (and usually not needed).

I Thus we seek m� n distinguished eigenvalues relevant to our application
(largest, smallest, rightmost, etc.)

I Projection Methods
V ⊂ Cn = k-dimensional subspace of Cn, the projection subspace for A
The columns of V ∈ Cn×k for an orthonormal basis for V:

V∗V = I, V∗AV ∈ Ck×k

We hope some eigenvalues of V∗AV σ(V∗AV) = {θ1, . . . , θk}

approximate some eigenvalues of A. σ(A) = {λ1, . . . , λn}

For example, θ1 ≈ λ1, . . . θm ≈ λm for some 1 ≤ m ≤ k.

I This talk mainly describes established results for the deterministic case,
with some thoughts from a RandNLA perspective along the way.
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why consider A 6= A∗ ?

While Hermitian problems are common (SVD, quantum mechanics, etc.),
many important applications lead to non-Hermitian problems – and subtler
issues of spectral perturbation theory. Many examples: [Trefethen, E. 2005].

I atmospheric science Farrell . . .
I fluid flow stability Trefethen; Schmid & Henningson; . . .
I damped mechanical systems Cox & Zuazua, . . .
I control theory Hinrichsen & Pritchard, . . .
I data-driven modeling Antoulas, Beattie, Gugercin, . . .
I lasers Landau, Siegman, . . .
I ecology May, Caswell, . . .
I Markov chains Diaconis, . . .
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computed rightmost eigenvalues for
stability of 2d flow over a backward
facing step, n = 381,539
[E., Keeler 2017]



An Overview of

Projection-Based

Eigensolvers



projection-based eigensolvers

V ⊂ Cn = k-dimensional subspace of Cn, the projection subspace for A.

The columns of V ∈ Cn×k form an orthonormal basis for V:

V∗V = I, V∗AV ∈ Ck×k

We hope some eigenvalues of V∗AV σ(V∗AV) = {θ1, . . . , θk}

approximate some eigenvalues of A. σ(A) = {λ1, . . . , λn}

For example, θ1 ≈ λ1, . . . θm ≈ λm for some 1 ≤ m ≤ k.

Power method (minimal storage, easy to implement, can be slow)

V = span{Apx}

Subspace iteration (more storage, subtler to implement, computes repeated eigs)

V = Range(ApX) for X ∈ Cn×k

[Halko, Martinsson, Tropp 2011] et al.
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projection-based eigensolvers: krylov methods

Power method (minimal storage, easy to implement, can be slow)

V = span{Apx}

Subspace iteration (more storage, subtler to implement, computes multiple eigs)

V = Range(ApX) for X ∈ Cn×b

Krylov subspace methods (growing subspace dimension; higher powers of A)

V = span{x,Ax,A2x, . . . ,Ak−1x}

Block Krylov methods (subspace dimension grows quickly: dim(V) ≤ kb)

V = Range([X AX A2X · · · Ak−1X]) for X ∈ Cn×b

SVD: [Musco & Musco 2015], [Drineas et al. 2018]

Must balance benefit of large k with block size b, storage.



projection-based eigensolvers: krylov methods (extensions)

Krylov subspace methods (growing subspace dimension; higher powers of A)

V = span{x,Ax,A2x, . . . ,Ak−1x}

Restarted Krylov (used in eigs: filter ψ improves starting vector)

V = span{ψ(A)x,Aψ(A)x,A2ψ(A)x, . . . ,Ak−1ψ(A)x}

Polynomial Preconditioned Krylov (very high degree polys, care needed)

V = span{x, π(A)x, π(A)2x, . . . , π(A)k−1x}

Shift-Invert Krylov (used in eigs: ideal for eigenvalues near µ)

V = span{x, (A− µI)−1)x, (A− µI)−2x, . . . , (A− µI)−(k−1)x}

Rational Krylov (helps for finding eigenvalues in a region)

V = span{x, (A− µ1)−1x, (A− µ2)−1x, . . . , (A− µk−1I)−1x}



preliminaries: spectral structure of A

I Distinct eigenvalues of A: λ1, λ2, . . . , λn̂

I Spectral projectors Pj and invariant subspaces Uj :

Pj :=
1

2πi

∫
Γj

(zI− A)−1 dz , Uj := Range(Pj),

Γj is a contour in C containing λj but no other distinct eigenvalues.

I If A = A∗ and λj is simple with unit eigenvector uj , then Pj = uju
∗
j .

I Pj is a projector onto the invariant subspace Uj ,
but Pj need not be an orthogonal projector when A 6= A∗.

I The spectral projectors give a resolution of the identity:
n̂∑

j=1

Pj = I.

I Pg := P1 + · · ·+ Pm̂, Ug := Range(Pg), m = dim(Ug).

I Pb := I− Pg, Ub := Range(Pb), dim(Ub) = n −m.
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preliminaries: angles between subspaces

I V = approximating subspace.

For our problems, V = Kk(A, x) := span{x,Ax,A2x, . . . ,Ak−1x}.

I Ug = desired invariant subspace

I Measure convergence via the containment gap:

δ(Ug,V) = max
u∈Ug

sin∠(u,V) = max
u∈Ug

min
v∈V

‖u− v‖
‖u‖ .

∠(u,V)

u

V

min
v∈V
‖u− v‖

I We will monitor how δ(Ug,Kk(A, x)) develops as k increases.



example convergence behavior, A 6= A∗
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example adapted from [Beattie, E., Rossi 2004]



basic convergence model

Building on [Saad 1980, 1983], [Jia 1995], [Sorensen 2002], [Beattie, E., Rossi 2004],
and others....

Theorem [Beattie, E., Sorensen 2005].

Suppose Ug is reachable from the Krylov space Kk(A, x).
Then for k ≥ 2m,

δ(Ug,Kk(A, x)) ≤ C1 C2 min
φ∈Pk−2m

max
z∈Ωb

|1− α(z)φ(z)|.

I C1 = C1(A, x) = measure of starting vector bias.

I C2 = C2(A,Ωb) = measure of eigenvector departure from orthogonality.

I Pk−2m = set of polynomials of degree k − 2m or less.

I Ωb ⊂ C contains the undesired eigenvalues.

I α(z) = (z − λ1) · · · (z − λm).



Invariant Subspaces

reachable by

Krylov Subspaces



reachable invariant subspaces

I If x ∈ Cn lacks a component in the desired eigenvector, e.g.,

P1x = 0,

the desired eigenvalue/eigenvector is invisible to Krylov methods
(in exact arithmetic). For example, in the power method

Apx =
n∑

j=1

λp
j Pjx = 0 +

n∑
j=2

λp
j Pjx,

the eigenvalue λ1 has no influence. (We will address this more later.)

I A different problem arises when A has repeated eigenvalues with linearly
indpendent eigenvectors (derogatory eigenvalues).

A simple example: A = I (identity matrix).

Kk(A, x) = span{x,Ax, . . . ,Ak−1x} = span{x}.

The Krylov method converges in one step (happy breakdown),
exactly finding one copy of the eigenvalue λ = 1 and eigenvector x.



reachable invariant subspaces

A more perplexing example from Chris Beattie [Beattie, E., Rossi 2004]:

A =


1
1 1

1
1 1

1 1

 , x =


1
c
1
1
1

 .
By taking c large, we bias x toward the eigenvector [0, 1, 0, 0, 0]T .

For any c the Krylov method breaks down (happily) at iteration k = 3,
discovering the Jordan block and invariant subspace

V∗AV = S

 1 0 0
1 1 0
0 1 1

S−1, Range




1 0 0
c 1 0
1 0 0
1 1 0
1 1 1


 .

The Krylov method finds the 3× 3 Jordan block with eigenvector [0, 0, 0, 0, 1]T .

Only a set of measure zero x can discover [0, 1, 0, 0, 0]T .



reachable invariant subspaces

I Unlucky choices of x ∈ Cn can (in principle) prevent the Krylov method
from seeing a desired (simple) eigenvector.

This behavior is fragile to numerical computations, since infinitesimal
perturbations to x will add a small component in the desired eigenvector.

I Single-vector Krylov methods can (in principle) find one Jordan block
associated with each eigenvalue.

This behavior is fragile to numerical computations, since infinitesimal
perturbations split multiple eigenvalues.

I Block Krylov methods (with block size b, X ∈ Cn×b)

Kk(A,X) = Range([X AX A2X · · · Ak−1X]),

can find b linearly independent eigenvectors for a single eigenvalue.



How does the

starting vector x

affect convergence ?



effect of starting vector on convergence

Henceforth assume the desired invariant subspace U is reachable from x:

Ug ⊂ Kn(A, x).

How does x influence convergence?

For a single eigenpair (λ1, u1) with spectral projector P1, Saad [1980] gives

sin∠(u1,Kk(A, x)) ≤ 1

‖P1x‖ min
φ∈Pk−1
φ(λ1)=1

‖(I− P1)ψ(A)‖,

The leading constant grows as the orientation of x toward u1 diminishes.

For m-dimensional invariant subspaces Ug, our bounds replace 1/‖P1x‖ with

C1 := max
ψ∈Pm−1

‖ψ(A)Pbx‖
‖ψ(A)Pgx‖ = max

v∈Km(A,x)

‖Pbv‖
‖Pgv‖ ,

the ratio of the bad to the good component in the worst approximation to Ug

from the m-dimensional Krylov space.
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effect of starting vector on convergence

A = symmetric matrix (n = 128) with
8 desired eigenvalues in [1, 2];
120 undesired eigenvalues in [−1, 0].

θ = ∠(x,Ug), the angle between x and its best approximation in Ug.
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How do the

eigenvalues of A

affect convergence ?



asymptotic convergence rate determined by eigenvalues

min
φ∈Pk−2m

max
z∈Ωb

|1− α(z)φ(z)|

I Pk−2m = set of polynomials of degree k − 2m or less.

I Ωb ⊂ C contains the undesired eigenvalues.

I α(z) = (z − λ1) · · · (z − λm).

The polynomial approximation problem gives convergence like C γk for some
constant C and rate γ.

I When A = A∗, Ωb = [λm+1, λn], and use Chebyshev polynomials to
compute the convergence rate γ.

I When Ωb is a simply connected open subset of C, use conformal mapping
to approach the approximation problem.



potential theoretic determination of the convergence rate

Step 1: Begin by identifying undesired (·) and desired (?) eigenvalues.



potential theoretic determination of the convergence rate

-

Step 2: Bound bad eigenvalues with Ωb.



potential theoretic determination of the convergence rate

- -

Step 3: Conformally map C \ Ωb to the exterior of the unit disk.



potential theoretic determination of the convergence rate

- -



�

Step 4: Find the lowest level curve of the Green’s function intersecting
a good eigenvalues.



potential theoretic determination of the convergence rate

- -



�

�

Step 5: Invert map to obtain curves of constant convergence rate in the
original domain.

Black circles on final figure are Fejér points, asymptotically optimal interpolation points for φ.



convergence rate: and granularity of the spectrum

If convergence is very slow, perhaps you are solving the wrong problem.

Consider m = 1, where we can use the elementary bound [Saad 1980]

sin∠(u1,Kk(A, x)) ≤ 1

‖P1x‖ min
φ∈Pk−1
φ(λ1)=1

‖(I− P1)ψ(A)‖.

Suppose A = A∗ and we seek leftmost eigenvalue λ1, where

λ1 < λ2 ≤ · · · ≤ λn.

The error bound suggests the progress made at each iteration is like

γ :=

√
κ− 1√
κ+ 1

, where κ :=
λn − λ1

λ2 − λ1
.

When A is a discretization of an unbounded operator, we expect
λn = ‖A‖ → ∞ as n→∞. The convergence rate goes to one as n→∞.

Thus Krylov subspace methods often perform poorly for PDE eigenvalue
problems — unless the set-up is modified.
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convergence slows as the discretization improves

Apply the Krylov method to discretizations of the Laplacian in one dimension.

How does the convergence rate change as the discretization improves?
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Convergence of Krylov Subspace Projection

The problem becomes immediately apparent if we attempt to run Krylov
subspace projection on the operator itself,

Kk(L, f ) = span{f , Lf , . . . , Lk−1f }.

For Lu = −u′′ with Dirichlet boundary conditions, u(0) = u(1) = 1,
take some starting vector f ∈ Dom(L), i.e.,

f (0) = f (1) = 0.

In general Lf 6∈ Dom(L), so we cannot build the next Krylov direction L2f = L(Lf ).

The Krylov algorithm breaks down at the third step.

The operator setting suggests that we instead apply Krylov to L−1:

Kk(L−1, f ) = span{f , L−1f , . . . , L−(k−1)f }.

In this case, L−1 is a beautiful compact operator:

(L−1f )(x) =

∫∫
f + C0 + C1x ,

where we choose C0 and C1 so that

(L−1f )(0) = (L−1f )(1) = 0.
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krylov projection applied to the operator

We run the Krylov method on L−1 exactly in Mathematica.
Denote the eigenvalue estimates at the kth iteration as θ

(k)
1 ≤ θ

(k)
2 ≤ · · · ≤ θ
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Observe superlinear convergence as k increases.

For CG and GMRES applied to operators, see [Winther 1980], [Nevanlinna 1993], [Moret 1997],
[Olver 2009], [Kirby 2010]. For “superlinear” convergence in finite dimensional settings, see [van
der Sluis, van der Vorst, 1986], [van der Vorst, Vuik, 1992], [Beattie, E., Rossi 2004], [Simoncini,
Szyld 2005].

This mode of computation is preferred for discretization matrices as well:
the shift-invert Arnoldi method uses Kk((A− µI)−1, x).
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polynomial preconditioning: a cheap spectral transformation

Replace the conventional Krylov space

Kk(A, x) = span{x,Ax,A2x, . . . ,Ak−1x}

with the polynomial preconditioned transformation

Kk(π(A), x) = span{x, π(A)x, π(A)2x, . . . , π(A)k−1x}.

[Thornquist 2006], [E., Loe, Morgan arXiv:1806.08020]

Use the polynomial π to separate the interesting eigenvalues.

Often increases matvecs, but decreases iterations (hence orthogonalization).

For example, with Hermitian A, take π to be the degree-d MINRES residual
polynomial [Paige & Saunders 1975], which attains

min
p∈Pd
p(0)=1

‖p(A)b‖.

This polynomial tends to separate smallest-magnitude eigenvalues.



polynomial preconditioning: a cheap spectral transformation

Polynomial preconditioning: Hermitian A, MINRES polynomial.
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How do the

eigenvectors of A

affect convergence ?



bounding functions of a matrix

If A is normal (A∗A = AA∗), eigenvectors are orthogonal. For f analytic on σ(A),

‖f (A)‖ = max
λ∈σ(A)

|f (λ)|.

For nonnormal A, the situation is considerably more complicated.

I If A is diagonalizable, A = UΛU−1, then

‖f (A)‖ ≤ ‖U‖ ‖U−1‖ max
λ∈σ(A)

|f (λ)|.

I For the numerical range (field of values) W (A) = {v∗Av : ‖v‖ = 1},

‖f (A)‖ ≤
(

1 +
√

2
)

max
z∈W (A)

|f (z)|.

I For the ε-pseudospectrum σε(A) = {z ∈ σ(A + E) for some ‖E‖ < ε},

‖f (A)‖ ≤ Lε
2πε

max
z∈σε(A)

|f (z)|,

where Lε is the boundary length of σε(A).



constant to account for nonnormality

C2 = C2(A,Ωb) comes from bounding ‖f (A|Ub )‖, f (z) = 1− α(z)φ(z).

Theorem [Beattie, E., Sorensen 2005].

Suppose Ug is reachable from the Krylov space Kk(A, x).
Then for k ≥ 2m,

δ(Ug,Kk(A, x)) ≤ C1 C2 min
φ∈Pk−2m

max
z∈Ωb

|1− α(z)φ(z)|.

I If Ωb = σ(A|Ub ) (no defective eigenvalues), then C2 = ‖Ub‖ ‖U+
b ‖,

where the columns of Ub ∈ Cn×(n−m) are eigenvectors of A|Ub .

I If Ωb = W (A|Ub ) then C2 = 1 +
√

2.

I If Ωb = σε(A|Ub ) then C2 = Lε/(2πε).

Tension: balance C2 ≥ 1 verses size of Ωb.



transient behavior of the power method

Large coefficients in the expansion of x0 in the eigenvector basis can lead to
cancellation effects in xk = Akx0.

Example: here different choices of α and β affect eigenvalue conditioning,

A =

 1 α 0
0 3/4 β
0 0 −3/4

 , u1 =

 1
0
0

 , u2 =

 −4α
1
0

 , u3 =

 8αβ/21
−2β/3

1

 .

:
u1

6u3

}
u2

x0
x2

x4
x6

x8

x1

x3
x5

x7 :
u2:
u1

6
u3

x0

x1, ..., x8 :
u1

i
u3

k
u2

x0
x2

x4
x6

x8x1

x3 x5 x7

α = β = 0 α = 10, β = 0 α = 0, β = 10

[Trefethen & E. 2005]



restarting

krylov suspace

methods

an essential tool for controlling subspace dimension



restarting krylov methods

restarted Arnoldi algorithm (eigs)

To compute m < k eigenvalues of A ∈ Cn×n,
Arnoldi methods restrict A to act on the
k-dimensional Krylov subspace

Ran(V) = span{x,Ax, . . . ,Ak−1x}.

Compute eigenvalues of V∗AV (Ritz values),
and order them by relevance; e.g., if seeking
the rightmost eigenvalue of A, let

Re θ1 ≥ Re θ2 ≥ · · · ≥ Re θk .

Exact shifts [Sorensen 1992] restart the
method, attempting to improve v with a
polynomial filter having the “unwanted” Ritz
values as roots:

x+ = (A− θm+1I) · · · (A− θk I)x.

To understand convergence, one must
understand how the Ritz values are

distributed over σ(A).
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Pushing the language Haim Avron used the pre-
vious talk, a standard Krylov method (fixed k)
is a sketch-and-solve method, while restarted
Krylov methods sketch-to-precondition.

I [Sorensen 1992] proved convergence for
A = A∗.

I The process fails for some A 6= A∗

[E. 2009], [Duintjer Tebbens, Meurant
2012].

I Stringent sufficient conditions are known
[Carden 2011].
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Do nonsymmetric matrices

enjoy any kind of

interlacing ?



interlacing is a key to convergence theory for A = A∗

Cauchy’s interlacing theorem assures us that Ritz values cannot bunch up at
the ends of the spectrum.
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interlacing does not hold for A = A∗

The absence of interlacing for non-Hermitian problems is the major impediment
to a full convergence theory – and is the mechanism that allows the method to
fail (in theory).
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a pathologically terrible example

A monster, built using the construction of [Duintjer Tebbens, Meurant 2012]:

A =



1 0 0 0 0 0 0 −362880
1 2 0 0 0 0 0 −1451520

1 3 0 0 0 0 −1693440
1 4 0 0 0 −846720

1 5 0 0 −211680
1 6 0 −28224

1 7 −2016
1 −64


, x =



1
0
0
0
0
0
0
0


.

arXiv:1801.00234
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ritz value localization for non-hermitian matrices

Do non-Hermitian matrices obey any kind of “interlacing” theorem?

Ritz values must be contained within the numerical range

W (A) = {v∗A v : ‖v‖ = 1},

a closed, convex subset of C that contains σ(A).

Consider an extreme example:

A =

 0 1 0
0 0 1
0 0 0

 , W (A) =

{
z ∈ C : |z | ≤

√
2

2

}
.

Repeat the following experiment many times:

I Generate random two dimensional subspaces, V = Ran V, where V∗V = I.

I Form V∗AV ∈ C2×2 and compute Ritz values {θ1, θ2} = σ(V∗AV).

I Identify the leftmost and rightmost Ritz values.

I Since σ(A) = {0}, “interlacing” is meaningless here. . .
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ritz values of a jordan block
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ritz values of a jordan block
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three matrices with identical W (A)

Compute k = 4 Ritz values for these 8× 8 matrices.

γ1


0 1

0
0 1

0
0 1

0
0 1

0




0 1
0 1

0 1
0 1

0 1
0 1

0 1
0

 γ3


0 %1

0 %2

0 %3

0 %4

0 %5

0 %6

0 %7

0

 .
(γ1 and γ3 set to give same W (A) for all examples; % = 1/8.)

Smallest magnitude of k = 4 Ritz values, 10,000 random complex subspaces.
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ritz value localization, sorted by real part

Using Schur’s eigenvalue majorization theorem for Hermitian matrices,
we can establish an interlacing-type result.

Theorem (Carden & E. 2012)

Let θ1, . . . , θk denote the Ritz values of A ∈ Cn×n drawn from a k < n
dimensional subspace, labeled by decreasing real part: Re θ1 ≥ · · · ≥ Re θk .
Then for j = 1, . . . , k,

µn−k+j + · · ·+ µn

k − j + 1
≤ Re θj ≤

µ1 + · · ·+ µj

j
,

where µ1 ≥ · · · ≥ µn are the eigenvalues of 1
2
(A + A∗).

I The fact that θj ∈W (A) gives the well-known bound

µ1 ≤ Re θj ≤ µn, j = 1, . . . , k.

The theorem provides sharper bounds for interior Ritz values.

I The interior eigenvalues of 1
2
(A + A∗) give additional insight;

cf. eigenvalue inclusion regions of [Psarrakos & Tsatsomeros, 2012].

I Theorem applies to any subspace Range(V): Krylov, block Krylov, etc.
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three matrices with identical W (A)

Three matrices with the same W (A), different interior structure; 2000 trials.
For k = 4, numbers on right indicate max Ritz values in each region.

A1

A2

A3

4

123 4 321

1 23 4 32 1



ritz value localization, sorted by magnitude

The log-majorization of products of eigenvalues by products of singular values
[Marshall, Olkin, Arnold 2011] leads to a limit on Ritz value magnitudes.

Theorem (Carden & E., 2012)

Let θ1, . . . , θk denote the Ritz values of A ∈ Cn×n drawn from a k < n
dimensional subspace, labeled by decreasing magnitude: |θ1| ≥ · · · ≥ |θk |.
Then for j = 1, . . . , k,

|θj | ≤ (s1 · · · sj
)1/j

,

where s1 ≥ · · · ≥ sn are the singular values of A.

Related results:

Zvonimir Bujanovic [2011] studies Ritz values of normal matrices from Krylov
subspaces in his Ph.D. thesis (Zagreb).

Jakeniah Christiansen [2012] studies real Ritz values for n = 3 (SIURO).
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some closing thoughts

Krylov methods can further develop as a prominent tool for RandNLA.

I Polynomials are better than powers!
Krylov methods have great advantages over power/subspace iteration.

I Block methods hold promise but additional subtleties.
Large subspaces can be built rapidly; must maintain linear independence.

I Restarting is crucial in engineering computations, but analysis is tricky.
Restarting controls the subspace dimension, refines the starting vector.

I Spectral transformations (shift-invert) can vastly accelerate convergence.
You are not entirely constrained by the eigenvalue distribution of A.

I Non-Hermitian problems are solved everyday.
The theory is incomplete and monsters are easy to construct,
but the Krylov method (as implemented in eigs/ARPACK) works well.

I Can Random Matrix Theory shed light on Ritz value locations?
What is the probability that A is stable if V∗AV is stable?


