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Abstract Loewner matrix pencils play a central role in the system realization theory
of Mayo and Antoulas, an important development in data-driven modeling. The
eigenvalues of these pencils reveal system poles. How robust are the poles recovered
via Loewner realization?With several simple examples, we show how pseudospectra
of Loewner pencils can be used to investigate the influence of interpolation point
location and partitioning on pole stability, the transient behavior of the realized
system, and the effect of noisy measurement data. We include an algorithm to
efficiently compute such pseudospectra by exploiting Loewner structure.

1 Introduction

The landmark systems realization theory of Mayo and Antoulas [19] shows how to
construct a dynamical system that interpolates tangential frequency domain mea-
surements of a multi-input, multi-output system. Central to this development is the
matrix pencil IL − LB composed of Loewner and shifted Loewner matrices L and
LB that encode the interpolation data. When this technique is used for exact system
recovery (as opposed to data-driven model reduction), the eigenvalues of this pencil
match the poles of the transfer function of the original system. However other spec-
tral properties, including the sensitivity of the eigenvalues to perturbation, can differ
greatly, depending on the location of the interpolation points in the complex plane
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relative to the system poles, and how the interpolation points are partitioned. Since
one uses IL − LB to learn about the original system, such subtle differences matter.

Pseudospectra are sets in the complex plane that contain the eigenvalues but
provide additional insight about the sensitivity of those eigenvalues to perturbation
and the transient behavior of the underlying dynamical system. While most often
used to analyze single matrices, pseudospectral concepts have been extended to
matrix pencils (generalized eigenvalue problems).

This introductory note shows several ways to use pseudospectra to investigate
spectral questions involving Loewner pencils derived from system realization prob-
lems. Using simple examples, we explore the following questions.

• How do the locations of the interpolation points and their partition into “left” and
“right” points affect the sensitivity of the eigenvalues of IL − LB?

• Do solutions to the dynamical system L ¤x(C) = LBx(C) mimic solutions to the
original system E¤x(C) = Ax(C), especially in the transient regime? Does this
agreement depend on the interpolation points?

• How do noisy measurements affect the eigenvalues of IL − LB?

We include an algorithm for computing pseudospectra of an =-dimensional Loewner
pencil in O(=2) operations, improving the O(=3) cost for generic matrix pencils; the
appendix gives a MATLAB implementation.

Throughout this note, we use f(·) to denote the spectrum (eigenvalues) of a
matrix or matrix pencil, and ‖ · ‖ to denote the vector 2-norm and the matrix norm it
induces. (All definitions here can readily be adapted to other norms, as needed. The
algorithm, however, is designed for use with the 2-norm.)

2 Loewner realization theory in a nutshell

We briefly summarize Loewner realization theory, as developed by Mayo and An-
toulas [19]; see also [1]. Consider the linear, time-invariant dynamical system

E¤x(C) = Ax(C) + Bu(C), y(C) = Cx(C)

for A,E ∈ C=×=, B ∈ C=×<, and C ∈ C?×=, with which we associate, via the
Laplace transform, the transfer function H(I) = C(IE − A)−1B.

Given tangential measurements of H(I) we seek a realization of the system that
interpolates the given data. More precisely, consider the right interpolation data

• distinct interpolation points _1, . . . , _ r ∈ C;
• interpolation directions r1, . . . , rr ∈ C<;
• function values w1, . . . ,wr ∈ C?;

and left interpolation data

• distinct interpolation points `1, . . . , `a ∈ C;
• interpolation directions ℓ1, . . . , ℓa ∈ C?;
• function values v1, . . . , va ∈ C<.
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Assume the left and right interpolation points are disjoint {_8}r8=1 ∩ {` 9 }a9=1 = ∅; (in
our examples, all r + a points are distinct).

The interpolation problem seeks matrices Â, Ê, B̂, Ĉ for which the transfer func-
tion Ĥ(I) = Ĉ(IÊ − Â)−1B̂ interpolates the data: for 8 = 1, . . . , r and 9 = 1, . . . , a,

Ĥ(_8)r8 = w8 , ℓ∗9Ĥ(` 9 ) = v∗9 .

Two structured matrices play a crucial role in the development of Mayo and An-
toulas [19]. From the data, construct the Loewner and shifted Loewner matrices

L =


v∗1r1−ℓ

∗
1w1

`1−_1 · · · v∗1rr−ℓ∗1wr

`1−_r

...
. . .

...
v∗ar1−ℓ

∗
aw1

`a−_1 · · · v∗arr−ℓ∗awr

`a−_r


, LB =


`1v
∗
1r1−_1ℓ

∗
1w1

`1−_1 · · · `1v
∗
1rr−_rℓ

∗
1wr

`1−_r

...
. . .

...
`av∗ar1−_1ℓ

∗
aw1

`a−_1 · · · `av∗arr−_rℓ
∗
awr

`a−_r


(1)

i.e., the (8, 9) entries of these a × r matrices have the form

(L)8, 9 =
v∗
8
r
9
− ℓ∗8w 9

`8 − _ 9

, (LB)8, 9 =
`
8
v∗
8
r
9
− _

9
ℓ∗8w 9

`8 − _ 9

.

Now collect the data into matrices. The right interpolation points, directions, and
data are stored in

� =


_1

. . .

_ r

 ∈C
r×r , R =

 r1 · · · rr

 ∈C<×r , W =

w1 · · ·wr

 ∈C?×r ,

while the left interpolation points, directions, and data are stored in

M =


`1

. . .

`a

 ∈C
a×a , L =

 ℓ1 · · · ℓa
 ∈C?×a , V =

 v1 · · · va
 ∈C<×a .

2.1 Selecting and arranging interpolation points

As Mayo and Antoulas observe, Sylvester equations connect these matrices:

L� −ML = L∗W − V∗R, LB� −MLB = L∗W� −MV∗R. (2)

Just using the dimensions of the components, note that

rank(L∗W), rank(L∗W�), ≤ min{a, r, ?}
rank(V∗R), rank(V∗RM) ≤ min{a, r, <}.
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Thus for modest < and ?, the Sylvester equations (2) must have low-rank right-hand
sides.1 This situation often implies the rapid decay of singular values of solutions
to the Sylvester equation [2, 3, 21, 22, 26]. While this phenomenon is convenient
for balanced truncation model reduction (enabling low-rank approximations to the
controllability and observability Gramians), it is less welcome in the Loewner real-
ization setting, where the rank of L should reveal the order of the original system:
fast decay of the singular values of L makes this rank ambiguous. Since � and M
are diagonal, they are normal matrices, and hence Theorem 2.1 of [3] gives

B@:+1 (L)
B1 (L)

≤ inf
q∈R:,:

max{|q(_) | : _ ∈ {_1, . . . , _ r}}
min{|q(`) | : ` ∈ {`1, . . . , `a}}

, (3)

where B 9 (·) denotes the 9 th largest singular value, @ = rank(L∗W−V∗R), and R:,:

denotes the set of irreducible rational functions whose numerators and denominators
are polynomials of degree : or less.2 The right hand side of (3) will be small when
there exists some q ∈ R:,: for which all |q(_8) | are small, while all |q(` 9 ) | are
large: a good separation of {_8} from {` 9 } is thus sufficient to ensure the rapid decay
of the singular values of L and LB . (Beckermann and Townsend give an explicit
bound for the singular values of Loewner matrices when the interpolation points fall
in disjoint real intervals [3, Cor. 4.2].)

Here, we want the singular values of L and LB to reveal the system’s order
(without decay of singular values as an accident of the arrangement of interpolation
points), it is necessary for one |q(_8) | to be at least the same size as the smallest
value of |q(` 9 ) | for all q ∈ R:,: . Roughly speaking, we want the left and right
interpolation points to be close together (even interleaved). While this arrangement
is necessary for slow decay of the singular values, it does not alone prevent such
decay, as will be seen in examples in Figure 4 (since (3) is only an upper bound).

Another heuristic, based on the Cauchy-like structure of L and LB , also suggests
the left and right interpolation points should be close together. Namely, L and LB are
a more general form of the Cauchy matrix (C)8, 9 = 1/(`8 − _ 9 ), whose determinant
has the elegant formula (e.g., [16, p. 38])

det(C) =
∏
1≤8< 9≤= (` 9 − `8) (_8 − _ 9 )∏

1≤8≤ 9≤= (`8 − _ 9 )
. (4)

It is an open question if det(L) and det(LB) have similarly elegant formulas. Never-
theless, det(L) and det(LB) do have the same denominator as det(C) (which can be
checked by recursively subtracting the first row from all other rows when computing
the determinant). This observation suggests that to avoid artificially small determi-
nants for L and LB (which, up to sign, are the products of the singular values) it is
necessary for the denominator of (4) to be small, and, thus, for the left and right
interpolation points to be close together.

1 For single-input, single-output (SISO) systems, < = ? = 1, so the rank of the right-hand sides
in (2) cannot exceed two. The same will apply for multi-input, multi-output systems with identical
left and right interpolation directions: ℓ8 ≡ ℓ for all 8 = 1, . . . , a and r 9 ≡ r for all 9 = 1, . . . , r.
2 The same bound holds for B@:+1 (LB)/B1 (LB) with @ = rank(L∗W� −MV∗R) .
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In practice, we often start with initial interpolation points G1, . . . , G2= that we
want to partition into left and right interpolation points to form L and LB . Our
analysis of (4) suggests a simple way to arrange the interpolation points such that
the denominator of det(L) and det(LB) is small: relabel the points to satisfy

G: = argmin
:≤@≤2=

|G:−1 − G@ |, for : = 2, . . . , 2=, (5)

{`8} = {G1, G3, . . . , G2=−1}, {_ 9 } = {G2, G4, . . . , G2=}.

The greedy reordering in (5) ensures that |G: − G:−1 | is small and allows us to
simply interleave the left and right interpolation points. Moreover, when G1, . . . , G2=
are located on a line, the reordering in (5) simplifies to directly interleaving `8
and _ 9 and, thus, it can be skipped. This ordering need not be optimal, as we
do not visit all possible combinations of `8 − _ 9 ; it simply seeks a partition that
yields a large determinant (which must also depend on the interpolation data). We
note its simplicity, effectiveness, and efficiency (requiring only O(=2) operations).
(For SISO systems, the state-space representation is equivalent to a barycentric
form [17, p. 77]. We thank the referee for observing that in barycentric rational
Remez approximations [9], a similar interleaving of support points from the set of
reference points produces favorable numerical conditioning. Recent work by Gosea
andAntoulas gives further numerical evidence for interleaving Loewner points [13].)

2.2 Construction of interpolants

Throughout we make the fundamental assumptions that for all Î ∈ {_8}r8=1∪{` 9 }a9=1,

rank ( Î L − LB) = rank
( [

L
LB

] )
= rank

( [
L LB

] )
=: A,

and we presume the underlying dynamical system is controllable and observable.
When A = a = r is the order of the system, Mayo and Antoulas [19, Lem. 5.1]

show that the transfer function Ĥ(I) := Ĉ(IÊ − Â)−1B̂ defined by

Ê = −L , Â = −LB , B̂ = V∗, Ĉ = W (6)

interpolates the r + a data values.
When A < max(a, r), fix some Î ∈ {_8}r8=1∪{` 9 }a9=1 and compute the (economy-

sized) singular value decomposition

Î L − LB = Y�X∗,

with Y ∈ Ca×A , � ∈ RA×A , and X ∈ Cr×A . Then with

Ê = −Y∗LX, Â = −Y∗LBX, B̂ = Y∗V∗, Ĉ = WX, (7)

Ĥ(I) := Ĉ(IÊ− Â)−1B̂ gives a order-A system interpolating the data [19, Thm. 5.1].
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3 Pseudospectra for matrix pencils

Though introduced decades earlier, in the 1990s pseudospectra emerged as a popular
tool for analyzing the behavior of dynamical systems (see, e.g., [30]), eigenvalue
perturbations (see, e.g., [4]), and stability of uncertain linear time-invariant (LTI)
systems (see, e.g., [15]).

Definition 1 For a matrix A ∈ C=×= and Y > 0, the Y-pseudospectrum of A is

fY (A) = {I ∈ C is an eigenvalue of A + � for some � ∈ C=×= with ‖�‖ < Y}. (8)

For all Y > 0,fY (A) is a bounded, open subset of the complex plane that contains the
eigenvalues of A. (A popular variation uses the weak inequality ‖�‖ ≤ Y; the strict
inequality has favorable properties for operators on infinite-dimensional spaces [5].)
Definition 1 motivates pseudospectra via eigenvalues of perturbed matrices. A nu-
merical analyst studying accuracy of a backward stable eigenvalue algorithm might
be concerned with Y on the order of =‖A‖Ymach, where Ymach denotes the machine
epsilon for the floating point system [20]. An engineer or scientist might consider
fY (A) for much larger Y values, corresponding to uncertainty in parameters or data
that contribute to the entries of A.

Via the singular value decomposition, one can show that (8) is equivalent to

fY (A) = {I ∈ C : ‖(II − A)−1‖ > 1/Y}; (9)

see, e.g., [29, chap. 2]. The presence of the resolvent (II − A)−1 in this definition
suggests a connection to the transfer function H(I) = C(II − A)−1B for the system

¤x(C) = Ax(C) + Bu(C), y(C) = Cx(C).

Indeed, definition (1) readily leads to bounds on ‖eCA‖, and hence transient growth
of solutions to ¤x(C) = Ax(C); see [29, part IV].

Various extensions of pseudospectra have been proposed to handle more general
eigenvalue problems and dynamical systems; see [7] for a concise survey. The first
elaborations addressed the generalized eigenvalue problem Ax = _Ex (i.e., the
matrix pencil IE − A) [10, 23, 24]. Here we focus on the definition proposed by
Frayssé, Gueury, Nicoud, and Toumazou [10], which is ideally suited to analyzing
eigenvalues of nearby matrix pencils. To permit the perturbations to A and E to be
scaled independently, this definition includes two additional parameters, W and X.

Definition 2 Let W, X > 0. For a pair of matrices A,E ∈ C=×= and any Y > 0, the
Y-(W, X)-pseudospectrum f

(W, X)
Y (A,E) of the matrix pencil IE − A is the set

f
(W, X)
Y (A,E) = {I ∈ C is an eigenvalue of the pencil I(E + �) − (A + �)

for some �,� ∈ C=×= with ‖�‖ < YW, ‖�‖ < YX}.

This definition has been extended to matrix polynomials in [14, 27].
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Remark 1 Note that f (W, X)Y (A,E) is an open, nonempty subset of the complex plane,
but it need not be bounded.

(a) If IE−A is a singular pencil (rank(IE−A) < = for all I ∈ C), then f(A,E) = C.
(b) If IE − A is a regular pencil but E is not invertible, then f(A,E) contains an

infinite eigenvalue, and hence f (W, X)Y (A,E) is unbounded.
(c) If E is nonsingular but YX exceeds the distance of E to singularity (the smallest

singular value of E), then f (W, X)Y (A,E) contains the point at infinity.

Since these pseudospectra can be unbounded, Lavallée [18] and Higham and Tis-
seur [14] visualizef (W, X)Y (A,E) as stereographic projections on the Riemann sphere.

Remark 2 Just as the conventional pseudospectrumfY (A) can be characterized using
the resolvent of A in (9), Frayseé et al. [10] show that Definition 2 is equivalent to

f
(W, X)
Y (A,E) =

{
I ∈ C : ‖(IE − A)−1‖ > 1

Y(W + |I |X)

}
. (10)

This formula suggests a way to compute f (W, X)Y (A,E): evaluate ‖(IE − A)−1‖ on
a grid of points covering a relevant region of the complex plane (or the Riemann
sphere) and use a contour plotting routine to draw boundaries of f (W, X)Y (A,E).
The accuracy of the resulting pseudospectra depends on the density of the grid.
Expedient algorithms for computing ‖(IE − A)−1‖ can be derived by computing
a unitary simultaneous triangularization (generalized Schur form) of A and E in
O(=3) operations, then using inverse iteration or inverse Lanczos, as described by
Trefethen [28] andWright [31], to compute ‖(IE−A)−1‖ at each grid point inO(=2)
operations. For the structured Loewner pencils of interest here, one can compute
‖(IE−A)−1‖ in O(=2) operations without recourse to the O(=3) preprocessing step,
as proposed in Section 4.

Remark 3 Definition 2 can be extended to X = 0 by only perturbing A:

f
(1,0)
Y (A,E) = {I ∈ C is an eigenvalue of the pencil IE − (A + �)

for some � ∈ C=×= with ‖�‖ < Y}.
= {I ∈ C : ‖(IE − A)−1‖ > 1/Y}.

This definition may be more suitable for cases where E is fixed and uncertainty in
the system only emerges, e.g., through physical parameters that appear in A.

Remark 4 Since we ultimately intend to study the pseudospectra f (W, X)Y (LB , L) of
Loewner matrix pencils, one might question the use of generic perturbations �,� ∈
C=×= in Definition 2. Should we restrict � and � to maintain Loewner structure,
i.e., so that LB + � and L + � maintain the coupled shifted Loewner–Loewner form
in (1)? Such sets are called structured pseudospectra.

Three considerationsmotivate the study of generic perturbations�,� ∈ C=×=: one
practical, one speculative, and one philosophical. (a) Beyond repeatedly computing



8 Mark Embree and A. Cosmin Ionit,ă

the eigenvalues of Loewner pencils with randomly perturbed data, no systematic
method is known to compute the coupled Loewner structured pseudospectra, i.e.,
no analogue of the resolvent-like definition (10) is known. (b) Rump [25] showed
that in many cases, preserving structure has little effect on the standard matrix
pseudospectra. For example, the structured Y-pseudospectrum of a Hankel matrix
H allowing only complex Hankel perturbations exactly matches the unstructured
Y-pseudospectrum fY (H) based on generic complex perturbations [25, Thm. 4.3].
Whether a similar results holds for Loewner structured pencils is an interesting
open question. (c) If one seeks to analyze the behavior of dynamical systems (as
opposed to eigenvalues of nearby matrices), then generic perturbations give much
greater insight; see [29, p. 456] for an example where real-valued perturbations do
not move the eigenvalues much toward the imaginary axis (hence the real structured
pseudospectra are benign), yet the stable system still exhibits strong transient growth.

As we shall see in Section 6, Definition 2 provides a helpful tool for investigating
the sensitivity of eigenvalues of matrix pencils. A different generalization of Defini-
tion 1 gives insight into the transient behavior of solutions of E¤x(C) = Ax(C). This
approach is discussed in [29, chap. 45], following [23, 24], and has been extended to
handle singular E in [8] (for differential-algebraic equations and descriptor systems).
Restricting our attention here to nonsingular E, we analyze the conventional (single
matrix) pseudospectra fY (E−1A). From these sets one can develop various upper
and lower bounds on ‖eCE−1A‖ and ‖x(C)‖ [29, chap. 15]. Here we shall just state
one basic result. If sup{Re(I) : I ∈ fY (E−1A)} =  Y for some  ≥ 1 (where Re(·)
denotes the real part of a complex number), then

sup
C≥0
‖eCE−1A‖ ≥  . (11)

This statement implies that there exists some unit-length initial condition x(0) such
that ‖x(C)‖ ≥  , even though f(A,E) may be contained in the left half-plane.
(Optimizing this bound over Y > 0 yields the Kreiss Matrix Theorem [29, (15.9)].)

Pseudospectra of matrix pencils provide a natural vehicle to explore that stability
of the matrix pencil associated with the Loewner realization in (6). We shall thus
investigate eigenvalue perturbations via f (W, X)Y (Â, Ê) = f (W, X)Y (LB , L) and transient
behavior via fY (L−1LB).

4 Efficient computation of Loewner pseudospectra

We first present a novel technique for efficiently computing pseudospectra of large
Loewner matrix pencils,f (W, X)Y (LB , L), using the equivalent definition given in (10).
When the Loewner matrix L is nonsingular, we employ inverse iteration to exploit
the structure of the Loewner pencil to compute ‖(IL − LB)−1‖ (in the two-norm)
using onlyO(=2) operations. This avoids the need to compute an initial simultaneous
unitary triangularization of LB and L using the QZ algorithm, an O(=3) operation.
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Inverse iteration (and inverse Lanczos) for ‖(IL − LB)−1‖ requires computing

(IL − LB)−∗ (IL − LB)−1u (12)

for a series of vectors u ∈ C= (e.g., see [29, chap. 39]). We invoke a property
observed by Mayo and Antoulas [19], related to (2): by construction, the Loewner
and shifted Loewner matrices satisfy LB − L� = V∗R. Thus the resolvent can be
expressed using only L and not LB:

(IL − LB)−1 = (L(II − �) − V∗R)−1.

We now use the Sherman–Morrison–Woodbury formula (see, e.g., [12]) to get

(IL − LB)−1 =
(
I + �(I) (I − R�(I))−1R

)
(II − �)−1L−1 = �(I)L−1,

where�(I) := (II−�)−1L−1V∗ and�(I) :=
(
I + �(I) (I − R�(I))−1R

)
(II−�)−1.

As a result, we can compute the inverse iteration vectors in (12) as

(IL − LB)−∗ (IL − LB)−1u = L−∗�(I)∗�(I)L−1u, (13)

which requires solving several linear systems given by the same Loewner matrix L,
e.g., L−1u, L−1V∗.

Crucially, solving a linear system involving a Loewner matrix L ∈ C=×= can
be done efficiently in only 2(< + ? + 1)=2 operations, since L has displacement
rank < + ?. More precisely, L is a Cauchy-like matrix that satisfies the Sylvester
equation (2) given by diagonal generator matrices � and M and a right-hand side of
rank at most<+ ?, i.e., rank(L∗W−V∗R) ≤ <+ ?. The displacement rank structure
of L can be exploited to compute its LU factorization in only 2(< + ?)=2 flops (see
[11] and [12, sect. 12.1]). Given the LU factorization of L, solving L−1u in (13) via
standard forward and backward substitution requires another 2=2 operations.

Next, multiplying�(I) with the solution of L−1u requires a total of 2<=2+(4<2+
6< + 2)= + 23<

3 − <2 operations, namely (to leading order on the factorizations):

• 2<=2 + 2<= operations to compute �(I) ∈ C=×<;
• <2 (2= − 1) + < operations to compute I − R�(I) ∈ C<×<;
• 23<

3 + 2<2= operations to solve (I − R�(I))−1R ∈ C<×= via
an LU factorization followed by = forward and backward substitutions;
• = + <(2= − 1) + (2< − 1)= + 2= operations to multiply �(I) with L−1u.

Finally, multiplying with L−∗�(I)∗ in (13) requires an additional 2=2 + 2<=2 +
(4<2 + 6< + 2)= + 23<

3 − <2 operations, bringing the total cost of computing (13)
to 2(3< + ? + 1)=2 + 4(2<2 + 3< + 1)= + 43<

3 − 2<2 operations.
In practice, the sizes of the right and left tangential directions are much smaller

than the size of the Loewner pencil, i.e., <, ? � =. For example, for scalar data
(associated with SISO systems), < = ? = 1. Therefore, in practice, computing (13)
can be done in only O(=2) operations.
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Table 1 Comparison of speed of computing f
(1,1)
Y (LB , L) using the fast Loewner algorithm

versus a generic inverse iteration method applied to simultaneous triangularizations of LB and L.

= O(=2) algorithm O(=3) algorithm
100 1.85 seconds 1.65 seconds
200 6.75 seconds 6.75 seconds
300 17.24 seconds 33.30 seconds
400 49.15 seconds 65.05 seconds

Partial pivoting can be included in the LU factorization of the Loewner matrix
L to overcome numerical difficulties. Adding partial pivoting maintains the O(=2)
operation count for the LU factorization of L (see [12, sect. 12.1]), and hence
computing (13) can still be done inO(=2) operations. The appendix gives aMATLAB
implementation of this efficient inverse iteration.

We measure these performance gains for a Loewner pencil generated by sampling
5 (G) = ∑8

:=1 (−1):+1
(
1 + 100(G − :)2

)−1/2 + (−1):+1 (
1 + 100(G − : − 1/2)2

)−1/2
at 2= points uniformly spaced in the interval [1, 8]. We compare our new O(=2)
Loewner pencil inverse iteration against a standard implementation (see [29, p. 373])
applied to a simultaneous triangularization of LB and L. (The simultaneous triangu-
larization costs O(=3) but is fast, as MATLAB’s qz routine invokes LAPACK code.
For a fair comparison, we test against a C++ implementation of the fast Loewner
code, compiled into a MATLAB .mex file.) Table 1 shows timings for both imple-
mentations by computing ‖(IL − LB)−1‖ on a 200 × 200 grid of points. Exploiting
the Loewner structure gives a significant performance improvement for large =.

We next examine two simple examples involving full-rank realization of SISO
systems, to illustrate the kinds of insights one can draw from pseudospectra of
Loewner pencils. (For these small examples we use the standard O(=3) algorithm.)

5 Example 1: eigenvalue sensitivity and transient behavior

We first consider a simple controllable and observable SISO system with = = 2:

E = I, A =

[
−1.1 1
1 −1.1

]
, B =

[
0
1

]
, C =

[
0 1

]
. (14)

This A is symmetric negative definite, with eigenvalues f(A) = {−0.1,−2.1}. Since
the system is SISO, the transfer function H(B) = C(BI − A)−1B maps C to C, and
hence the choice of “interpolation directions” is trivial (though the division into “left”
and “right” points matters). We take r = a = 2 left and right interpolation points,
with r1 = r2 = 1 and ℓ1 = ℓ2 = 1. We will study various choices of interpolation
points, all of which satisfy, for each Î ∈ {_1, _2, `1, `2},

rank( Î L − LB) = rank(L) = rank(LB) = = = 2. (15)
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This basic set-up makes it easy to focus on the influence of the interpolation points
_1, _2, `1, `2. We will use the pseudospectra f (1,1)Y (LB , L) to examine how the
interpolation points affect the stability of the eigenvalues of the Loewner pencil.

Table 2 records four different choices of {_1, _2, `1, `2}; Figure 1 shows the cor-
responding pseudospectra f (1,1)Y (LB , L). All four Loewner realizations match the
eigenvalues of A and satisfy the interpolation conditions. However, the pseudospec-
tra show how the stability of the eigenvalues −0.1 and −2.1 differs across these
four realizations. From example (a) to (d), these eigenvalues become increasingly
sensitive as the interpolation points move farther from f(A). Table 2 also shows
the singular values of the Loewner matrix L, demonstrating how the second singular
value B2 (L) decreases as the eigenvalues become increasingly sensitive. (Taken to a
greater extreme, it would eventually be difficult to determine if L truly is rank 2.)

Table 2 Right and left interpolation points for the two-dimensional SISO system (14). The two
right columns report the singular values of the Loewner matrix L.

example _1 _2 `1 `2 B1 (L) B2 (L)
(a) 0 1 1i −1i 6.9871212 0.0731542
(b) 0.25 0.75 2i −2i 1.0021659 0.0296996
(c) 0.40 0.60 4i −4i 0.3605151 0.0057490
(d) 8 9 10 11 0.0035344 0.0000019
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Fig. 1 Boundaries of pseudospectra f (1,1)Y (LB , L) for four Loewner realizations of the system (14)
using the interpolation points in Table 2. All four realizations correctly give f (LB , L) = f (A) ,
but f (1,1)Y (LB , L) show how the stability of the realized eigenvalues depends on the choice of
interpolation points. In this and all similar plots, the colors denote log10 (Y) . Thus, in plot (d), there
exist perturbations to LB and L of norm 10−6.5 that move an eigenvalue into the right half-plane.
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Fig. 2 The pseudospectra fY (A) (top), compared to fY (L−1LB) for four Loewner realizations
of the system (14) using the interpolation points in Table 2. In all cases f (L−1LB) = f (A) , but
the pseudospectra of L−1LB are all quite a bit larger than fY (A) .
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Fig. 3 Evolution of the norm of the solution operator for the original system (black dashed line) and
the four interpolating Loewner models. The instability revealed by the pseudospectra in Figure 2
correspond to transient growth in the Loewner systems.
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Remark 5 By Remark 1, note that if Y < Bmin (L), then f (1,1)Y (LB , L) will be un-
bounded. Thus the decreasing values of Bmin (L) in Table 2 suggest the enlarging
pseudospectra seen in Figure 1. For example, in case (d) the Y = 10−5 pseudospec-
trum f

(1,1)
Y (LB , L) must contain the point at infinity.

Contrast these results with the standard pseudospectra of A itself, fY (A) =

f
(1,0)
Y (A, I) shown at the top of Figure 2. Since A is real symmetric (hence normal),

fY (A) is the union of open Y-balls surrounding the eigenvalues. Figure 2 compares
these pseudospectra to fY (L−1LB), which give insight into the transient behavior
of solutions to L ¤x(C) = LBx(C), e.g., via the bound (11). (Since LB − L� = V∗R,
and < = 1, L−1LB = � + L−1V∗R is a rank-1 update of the matrix � [19, p. 643].)
The top plot shows fY (A), whose rightmost extent in the complex plane is always
Y− 0.1: no transient growth is possible for this system. However, in all four Loewner
realizations, fY (L−1LB) extends more than Y into the right-half plane for Y = 100
(orange level curve), indicating by (11) that transient growth must occur for some
initial condition. Figure 3 shows this growth for all four realizations: the more remote
interpolation points lead to Loewner realizations with greater transient growth.

6 Example 2: partitioning interpolation points and noisy data

To further investigate how the interpolation points influence eigenvalue stability for
the Loewner pencil, consider the SISO system of order 10 given by

E = I, A = diag(−1,−2, . . . ,−10), B = [1, 1, . . . , 1]) , C = [1, 1, . . . , 1] .

Figure 4 shows f (1,1)Y (LB , L) for six configurations of the interpolation points.
Plots (a) and (b) use the points {−10.25,−9.75,−9.25, . . . ,−1.25,−0.75}; in plot (a)
the left and right points interleave, suggesting slower decay of the singular values
of L, as discussed in Section 2.1; in plot (b) the left and right points are separated,
leading to faster decay of the singular values of L and considerably larger pseu-
dospectra. (The Beckermann–Townsend bound [3, Cor. 4.2] applies to this case.)
Plot (c) further separates the left and right points, giving even larger pseudospectra.
In plots (d) and (f), complex interpolation points {−5± 0.5i,−5± 1.0i, . . . ,−5± 5i}
are mostly interleaved (d) (keeping conjugate pairs together) and separated (f): the
latter significantly enlarges the pseudospectra. Plot (f) uses the same relative arrange-
ment that gave such nice results in plot (a) (the singular value bound (3) is the same
for (a) and (e)), but their locations relative to the poles of the original system differ.
The pseudospectra are now much larger, showing that a large upper bound in (3)
is not alone enough to guarantee small pseudospectra. (Indeed, the pseudospectra
are so large in (e) and (f) that the plots are dominated by numerical artifacts of
computing ‖(IL − LB)−1‖.) Pseudospectra reveal the great influence interpolation
point location and partition can have on the stability of the realized pencils.

Pseudospectra also give insight into the consequences of inexact measurement
data. (For a recent study of how noisy data affects the recovered transfer function,
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Fig. 4 Pseudospectra f
(1,1)
Y (LB , L) for six Loewner realizations of a SISO system of order

= = 10 with poles f (A) = {−1, −2, . . . , −10}. Black dots show computed eigenvalues of the
pencil IL − LB (which should agree with f (A) , but a few are off axis in plot (e)); blue squares
show the right interpolation points {_8 }; red diamonds show the left points {` 9 }.

see [6].) Consider the following experiment. Take the scenario in Figure 4(a), themost
robust of these examples. Subject each right and leftmeasurement {w1, . . . ,wr} ⊂ C
and {v1, . . . , va} ⊂ C to random complex noise of magnitude 10−1, then build the
Loewner pencil I L̂ − L̂B from this noisy data. How do the badly polluted measure-
ments affect the computed eigenvalues? Figure 5 shows the results of 1,000 random
trials, which can depart from the true matrices significantly:

3.06 ≤ ‖ L̂B − LB ‖ ≤ 5.88, 0.49 ≤ ‖ L̂ − L‖ ≤ 0.63.

Despite these large perturbations, the recovered eigenvalues are remarkably accurate:
in 99.99% of cases, the eigenvalues have absolute accuracy of at least 10−2, indeed
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Fig. 5 Eigenvalues of the perturbed Loewner pencil L̂B − I L̂ (gray dots), constructed from mea-
surements that have been perturbed by random complex noise of magnitude 10−1 (left) and 5 · 10−9
(right) (1,000 trials). As the pseudospectra in Figure 4(a,d) indicate, the interleaved interpolation
points on the left are remarkably stable, while the similarly interleaved complex interpolation points
on the right give a Loewner pencil that is highly sensitive to small changes in the data.

more accurate than the measurements themselves. The pseudospectra in Figure 4(a)
suggest good robustness (though the pseudospectral level curves are pessimistic
by one or two orders of magnitude). Contrast this with the complex interleaved
interpolation points used in Figure 4(d). Now we only perturb the data by a small
amount, 5 ·10−9, for which the perturbed Loewner matrices (over 1,000 trials) satisfy

1.52 · 10−7 ≤ ‖ L̂B − LB ‖ ≤ 2.03 · 10−7, 2.57 · 10−8 ≤ ‖ L̂ − L‖ ≤ 3.14 · 10−8.

With this mere hint of noise, the eigenvalues of the recovered system erupt: only
36.73% of the eigenvalues are correct to two digits. (Curiously, −4 and −5 are
always computed correctly, while −8, −9, and −10 are never computed correctly.)
The pseudospectra indicate that the leftmost eigenvalues aremore sensitive, and again
hint at the effect of the perturbation (though off by roughly an order of magnitude
in Y).3 Measurements of real systems (or even numerical simulations of nontrivial
systems) are unlikely to produce such high accuracy; pseudospectra can reveal the
virtue or folly of a given interpolation point configuration.

In these simple experiments, pseudospectra have been most helpful for indicating
the sensitivity of eigenvalues when the left and right interpolation points are favor-
ably partitioned (e.g., interleaved). They seem to be less precise at predicting the
sensitivity to noise of poor left/right partitions of the interpolation points. Figure 6
gives an example, based on the two partitions of the same interpolation points in
Figure 4(d,f). The pseudospectra suggest that the eigenvalues for plot (f) should be
much more sensitive to noise than those for the interleaved points in plot (d). In fact,
the configuration in plot (f) appears to be only marginally less stable to noise of size
10−10, over 10,000 trials. This is a case where one could potentially glean additional
insight from structured Loewner pseudospectra.

3 One might also consider the Y = 1 level curve of f (W★, X★)Y (LB , L) for W★ = max{ ‖LB − L̂B ‖ }
and X★ = max{ ‖L − L̂ ‖ }.
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Fig. 6 Eigenvalues of the perturbed Loewner pencil L̂B − I L̂ (gray dots), constructed from mea-
surements that have been perturbed by random complex noise of magnitude 10−10 (10,000 trials).
As suggested by the pseudospectra plots, the interleaved interpolation points (left) aremore robust to
perturbations than the separated points (right), though the difference is not as acute as suggested by
Figure 4(d,f). For example, in these 10,000 trials, the least stable pole (−9) is computed accurately
(absolute error less than .01) in 10.97% of trials on the left, and 0.29% on the right.

7 Conclusion
Pseudospectra provide a tool for analyzing the stability of eigenvalues of Loewner
matrix pencils. Elementary examples show how pseudospectra can inform the se-
lection and partition of interpolation points, and bound the eigenvalues of Loewner
pencils in the presence of noisy data. Using a different approach to pseudospectra,
we showed that while the realized Loewner pencil matches the poles of the original
system, it need not replicate transient dynamics of E¤x(C) = Ax(C); pseudospectra
can reveal potential transient growth, which varies with the interpolation points.

In this initial study we have intentionally used simple examples involving small,
symmetric A and E = I. Realistic examples, e.g., with complex poles, nonnormal A,
singular E, multiple inputs and outputs, and rank-deficient Loewner matrices, will
add additional complexity. Moreover, we have only sought to realize a system whose
order is known; we have not addressed pseudospectra of the reduced pencils (7) in
the context of data-driven model reduction.

Structured Loewner pseudospectra provide another avenue for future study. Struc-
tured matrix pencil pseudospectra have not been much investigated, especially with
Loewner structure. Rump’s results for standard pseudospectra [25] suggest the fol-
lowing problem; its positive resolution would imply that the Loewner pseudospec-
trum f

(W, X)
Y (LB , L) matches the structured Loewner matrix pseudospectrum.

Given any Y, W, X > 0, Loewner matrix L and associated shifted Loewner matrix
LB , suppose I ∈ f

(W, X)
Y (LB , L). Does there exist some Loewner matrix L̂ and

associated shifted Loewner matrix L̂B such that I ∈ f( L̂B , L̂) and

‖ L̂B − LB ‖ < n W, ‖ L̂ − L‖ < n X ?
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Appendix
We provide a MATLAB implementation that computes the inverse iteration vectors
u in (12) in only O(=2) operations by exploiting the Cauchy-like rank displacement
structure of the Loewner pencil, as shown in (13). Namely, we start from the general
O(=3) MATLAB code from [29, p. 373] and modify it to account for the Loewner
structure, and hence achieve O(=2) efficiency. This code computes ‖(IL − LB)−1‖
for a fixed I. To compute pseudospectra, one applies this algorithm on a grid of I
values. In that case, the O((< + ?)=2) structured LU factorization in the first line
need only be computed once for all I values (just as the standard algorithm computes
an O(=3) simultaneous triangularization using the QZ algorithm once for all I).

[L1,U1,piv1] = LUdispPiv(mu,lambda,[V’ L’],[R.’ -W.’]);
L1t = L1’; U1t = U1’;
z = 1./(z-lambda); Upz = z.*(U1\(L1\V(:,piv1)’));
[L2,U2,piv2] = lu(eye(m)-R*Upz,’vector’); R2 = R(piv2,:);
L2t = L2’; U2t = U2’; R2t = R2’; Upzt = Upz’;
applyTheta = @(x) x+Upz*(U2\(L2\(R2*x)));
applyThetaTranspose = @(x) x+R2t*(L2t\(U2t\(Upzt*x)));

sigold = 0;
for it = 1:maxit

u = U1\(L1\u(piv1));
u = conj(z).*applyThetaTranspose(applyTheta(z.*u));
u(piv1) = L1t\(U1t\u);
sig = 1/norm(u);
if abs(sigold/sig-1) < 1e-2, break, end
u = sig*u; sigold = sig;

end
sigmin = sqrt(sig);

The function LUdispPiv computes the LU factorization (with partial pivoting)
of the Loewner matrix L in O((< + ?)=2) operations. The Loewner matrix is not
formed explicitly; instead, the function uses the raw interpolation data _8 , r8 ,w8 and
` 9 , ℓ 9 , v 9 . The implementation details for LUdispPiv can be found in [12, sect. 12.1].
The LU factorization of I − RV∗ (I) ∈ C<×< is given by L2 and U2, while the first
three lines of the loop represent the computation of L−∗�(I)∗�(I)L−1u, as defined
in (13). Note the careful grouping of terms and the use of elementwise multiplication
.* to keep the total operation count at O(=2).
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