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Abstract. Krylov subspace methods have led to reliable and effective tools for resolving large-scale,
non-Hermitian eigenvalue problems. Since practical considerations often limit the dimen-
sion of the approximating Krylov subspace, modern algorithms attempt to identify and
condense significant components from the current subspace, encode them into a polyno-
mial filter, and then restart the Krylov process with a suitably refined starting vector. In
effect, polynomial filters dynamically steer low-dimensional Krylov spaces toward a desired
invariant subspace through their action on the starting vector. The spectral complexity
of nonnormal matrices makes convergence of these methods difficult to analyze, and these
effects are further complicated by the polynomial filter process.

The principal object of study in this paper is the angle an approximating Krylov sub-
space forms with a desired invariant subspace. Convergence analysis is posed in a geometric
framework that is robust to eigenvalue ill-conditioning, yet remains relatively uncluttered.
The bounds described here suggest that the sensitivity of desired eigenvalues exerts little
influence on convergence, provided the associated invariant subspace is well-conditioned;
ill-conditioning of unwanted eigenvalues plays an essential role. This framework also gives
insight into the design of effective polynomial filters. Numerical examples illustrate the
subtleties that arise when restarting non-Hermitian iterations.
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1. Introduction. Recent improvements in algorithms and software have made
large-scale eigenvalue computations increasingly routine. For example, Burroughs
et al. resolve unstable flow regimes in a differentially heated cavity by calculating the
three rightmost eigenvalues of matrices with dimension beyond 3 million [4]. For prob-
lems of such scale, computation of all eigenvalues and eigenvectors is both impractical
and unnecessary. Instead, one restricts the matrix to a well-chosen subspace, from
which approximations to eigenvalues and eigenvectors of physical interest are drawn.
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In this paper we analyze restriction onto Krylov subspaces, the approach taken
by the Arnoldi and bi-orthogonal Lanczos algorithms [2], which engage the matrix
only through matrix-vector multiplications. The �th Krylov subspace generated by
the matrix A ∈ Cn×n and the vector v1 ∈ Cn is

K�(A,v1) ≡ span{v1,Av1, . . . ,A�−1v1}.

Krylov subspace methods approximate the eigenvalues of A by the eigenvalues of
a restriction of A to K�(A,v1). If we wish to understand the capacity of Krylov
subspace methods to provide accurate approximations and to quantify those factors
that influence convergence, we must first settle on an appropriate way to measure
accuracy.

Given an approximate eigenpair (λ̂, û) with ‖û‖ = 1, the residual norm ‖Aû−λ̂û‖
provides a natural measure of accuracy that can be easily computed. For Hermitian
problems, this residual norm bounds the distance between λ̂ and a nearest eigenvalue
of A. In contrast, the eigenvalues of non-Hermitian matrices can be highly sensitive to
perturbations, in which case a small residual no longer implies comparable accuracy
in the approximate eigenvalue. We contend that direct study of convergence to in-
variant subspaces yields greater insight than can be drawn from residual norms. Such
an approach facilitates analysis when the coefficient matrix is defective or otherwise
far from normal. In this work, we bound convergence of the largest canonical angle
between a fixed invariant subspace and a Krylov subspace as the approximating sub-
space is enlarged or refined via polynomial restarts. As our development deals with
subspaces, rather than the eigenvalue estimates generated by any particular algorithm,
it provides a general convergence framework for all Krylov eigenvalue algorithms.

Bounds of this sort are familiar in the Krylov subspace literature, beginning
with Saad’s 1980 article that revived interest in the Arnoldi algorithm [22]. Among
that paper’s contributions is a bound on the angle between a single eigenvector and
a Krylov subspace in terms of a simple polynomial approximation problem in the
complex plane. Jia generalized this bound to handle defective eigenvalues; his analysis
uses the Jordan structure of A and derivatives of the approximating polynomial [13].
Various other generalizations of Saad’s bound have been developed for block Krylov
methods [15, 21, 23].

Recently, new bounds have been derived for single-vector Krylov subspace meth-
ods that impose no restriction on the dimension of the desired invariant subspace
or diagonalizability of A, yet still result in a conventional polynomial approximation
problem [3]. While examples demonstrate that these bounds can be descriptive, their
derivation involves fairly intricate arguments. Our purpose is to present simplified
bounds whose development is more elementary, even suitable for classroom presenta-
tion. The resulting analysis incorporates a different polynomial approximation prob-
lem. In typical situations the new bounds are weaker at early iterations, though the
asymptotic convergence rate we establish is never worse than that obtained in [3]. In
certain situations where the desired eigenvalues are ill-conditioned, these new bounds
improve the earlier analysis.

Our first main result bounds the distance of K�(A,v1) from a desired invariant
subspace of A as the approximating subspace dimension � increases and the starting
vector v1 remains fixed, the classic setting for convergence analysis. In theory, Krylov
projection methods terminate in a finite number of steps, but for very large problems,
analysis of such asymptotic behavior still has computational significance.

In most practical situations, the desired eigenvalues are not well-separated from
the rest of the spectrum. This causes slow convergence, and hence the dimension
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of the approximating subspace must become intractably large to deliver estimates
with acceptable accuracy. To limit storage requirements and computational cost, one
restarts the algorithm with improved starting vectors. Polynomial restarting is a
popular approach that is often very effective. Here one projects A onto the Krylov
subspace K�(A,v(r)

1 ), where the dimension � remains fixed, but the starting vector is
modified at each outer iteration: v(r)

1 = φr(A)v(r−1)
1 , where v(0)

1 = v1 and φr is a
polynomial with deg(φr) < �. Thus v(r)

1 = Φr(A)v1, where Φr(z) =
∏r
j=1 φj(z) is

the product of all the restart polynomials. Though the projection space K�(A,v(r)
1 )

is always a subspace of the full Krylov space K�r(A,v1), the asymptotic convergence
behavior of restarted algorithms depends critically on the selection of the polynomials
φj . Our convergence analysis is based on selecting the zeros of these polynomials
with respect to regions in the complex plane, a setting in which classical polynomial
approximation results apply.

Ultimately, our bounds predict asymptotic convergence at a rate determined by
the distance between the desired and unwanted eigenvalues. Ill-conditioning of un-
wanted eigenvalues can impede the convergence rate, but similar sensitivity of the
desired eigenvalues plays no role in the asymptotic behavior of our bounds, provided
the associated invariant subspace is well-conditioned. Starting vector bias affects the
transient delay preceding convergence, but does not influence the ultimate conver-
gence rate.

Before proceeding to our bounds, we establish notation and give basic require-
ments on the matrix A, the desired invariant subspace, and the starting vector v1
that ensure convergence is possible. In all that follows, ‖ · ‖ denotes the standard
vector two-norm and the matrix norm it induces.

2. Decomposition of Krylov Spaces with Respect to Eigenspaces of A. Sup-
pose the matrix A ∈ Cn×n has N distinct eigenvalues, {λj}, j = 1, . . . , N . We wish to
compute L < N of these eigenvalues, λ1, . . . , λL, which we shall call the good eigen-
values. The remaining eigenvalues, the bad eigenvalues, are viewed as undesirable
only to the extent that they are not of immediate interest, and we do not wish to
expend any effort to compute them. We impose no assumptions regarding eigenvalue
multiplicity; in particular, both good and bad eigenvalues may be defective.

We aim to understand how a Krylov space might converge to an invariant subspace
associated with the good eigenvalues. To do this, we need to explain how C

n is
decomposed into such subspaces. Our focus naturally arrives at the complementary
maximal invariant subspaces associated with the good and bad eigenvalues:

Xg ≡
L⊕
j=1

Ker(A− λjI)nj and Xb ≡
N⊕

j=L+1

Ker(A− λjI)nj ,

where nj denotes the ascent of λj . When A is diagonalizable, Xg and Xb are simply the
span of all eigenvectors corresponding to the good and bad eigenvalues; for defective
matrices, Xg and Xb will include all generalized eigenvectors of higher grade as well.
In either case,

C
n = Xg ⊕Xb.

How well can Xg be approximated by vectors drawn from the Krylov subspace
K�(A,v1), and how does this relate the dimension k and properties of A and v1? In
this section we characterize those good invariant subspaces (within Xg) that can be
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captured with Krylov subspaces, adapting the discussion from [3]. Throughout we
assume that the starting vector v1 is fixed.

Since the dimension of K�(A,v1) is bounded by n, there exists a smallest positive
integer s such that

Ks(A,v1) = span{v1,Av1,A2v1, . . . } =: K(A,v1).

This maximal Krylov subspace, K(A,v1), is evidently an invariant subspace of A.
However, if any good eigenvalue is derogatory (i.e., has geometric multiplicity greater
than 1), then Xg �⊆ K(A,v1) and no Krylov subspace generated by v1 will capture all
of Xg. To see this, note that since Asv1 ∈ span{v1,Av1,A2v1, . . . ,As−1v1}, there
exists a polynomial, µ(z) = zs − γs−1z

s−1 − · · · − γ1z − γ0, such that µ(A)v1 = 0.
This µ is the minimal polynomial of A with respect to v1, i.e., the monic polynomial
µ of lowest degree such that µ(A)v1 = 0.

Now, write K = [v1 Av1 · · · As−1v1] ∈ Cn×s and note that

AK = KAs,

where As has the companion matrix form

As =




γ0
1 γ1

. . .
...

1 γs−1


 ;

unspecified entries are zero. Since As is a companion matrix, it cannot be derogatory;
hence K(A,v1) = Range(K) cannot contain any invariant subspace associated with
a derogatory eigenvalue [25]. Can it come close?

What does it mean for a Krylov subspace K�(A,v1) to come close to a fixed
invariant subspace as the dimension � increases? We seek a framework to discuss the
proximity of subspaces to one another. The intuitive notion of the angle between
subspaces is unambiguous only for pairs of one-dimensional subspaces; we require
some way of measuring the distance between subspaces of different dimensions. The
containment gap between the subspaces W and V is defined as

δ(W,V) ≡ max min
w∈W v∈V

‖w − v‖
‖w‖ .

Note that δ(W,V) is the sine of the largest canonical angle betweenW and the closest
subspace of V with the same dimension as W. If dimV < dimW, then δ(W,V) = 1,
while δ(W,V) = 0 if and only if W ⊆ V. See [14, sect. IV.2.1] and [26, sect. II.4] for
further details.

2.1. Characterization of the Maximal Reachable Invariant Subspace. Let µ̃
denote the minimal annihilating polynomial of A, i.e., the monic polynomial µ̃ of
lowest degree such that µ̃(A) = 0. (Note that µ̃ must contain µ as a factor.) We
decompose Cn into good and bad invariant subspaces using the following construction
of Gantmacher [11, sect. VII.2]. Factor µ̃ as the product of two monic polynomials,
µ̃(z) = α̃g(z)α̃b(z), where α̃g and α̃b have the good and bad eigenvalues as roots,
respectively, and are the lowest degree polynomials that satisfy

α̃g(A)Xg = {0} and α̃b(A)Xb = {0}.
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A partial fraction expansion provides two polynomials, βg(z) and βb(z), such that

1
α̃g(z)α̃b(z)

=
βg(z)
α̃g(z)

+
βb(z)
α̃b(z)

.

Rearranging and substituting A ↪→ z yields I = α̃g(A)βb(A) + α̃b(A)βg(A).
Now, define Pg ≡ α̃b(A)βg(A) and Pb ≡ α̃g(A)βb(A), so that Pg+Pb = I. Noting

that α̃g(A)α̃b(A) = 0, one may verify the following:

Pg = P2
g , APg = PgA, Xg = Range(Pg), Xb = Ker(Pg);

Pb = P2
b , APb = PbA, Xb = Range(Pb), Xg = Ker(Pb).

Hence Pg and Pb are spectral projections onto the good and bad invariant subspaces,
Xg and Xb.

Our first result decomposes the maximal Krylov subspace into two Krylov sub-
spaces with projected starting vectors.

Lemma 2.1.

K(A,v1) = K(A,Pgv1)⊕K(A,Pbv1).

Proof. Since Pgv1 ∈ K(A,Pgv1) ⊆ Xg and Pbv1 ∈ K(A,Pbv1) ⊆ Xb with
Xg ∩ Xb = {0}, for any x = ψ(A)v1 ∈ K(A,v1) we have

x = ψ(A)
(
Pg + Pb

)
v1 =

(
ψ(A)Pgv1 + ψ(A)Pbv1

)
∈ K(A,Pgv1)⊕K(A,Pbv1).

To demonstrate the opposite containment, suppose x ∈ K(A,Pgv1) ⊕ K(A,Pbv1).
Then there exist polynomials ψg and ψb such that

x = ψg(A)Pgv1 + ψb(A)Pbv1

=
(
ψg(A)α̃b(A)βg(A) + ψb(A)α̃g(A)βb(A)

)
v1

∈ K(A,v1).

The next corollary immediately follows from the fact that K(A,Pgv1) ⊆ Xg and
K(A,Pbv1) ⊆ Xb.

Corollary 2.2.

K(A,Pgv1) = K(A,v1) ∩ Xg.

Thus K(A,Pgv1) is a distinguished subspace, called the maximal reachable in-
variant subspace for the starting vector v1. It is the largest invariant subspace of Xg
to which our Krylov subspace can possibly converge; we denote it by

Ug ≡ K(A,Pgv1) ⊆ Xg.

Ideally, Ug = Xg, but we have already seen that if any good eigenvalue is derogatory,
no Krylov subspace generated from a single starting vector can fully capture Xg, and
then Ug �= Xg. (Curiously, eigenvalues that are defective but nonderogatory avoid
this problem.) Also note that if the starting vector v1 lacks a component in any
good generalized eigenvector of maximal grade, then again Ug �= Xg. The following
lemma [3, 25] identifies an explicit barrier to how close a Krylov subspace can come
to Xg. This barrier is independent of the approximating subspace dimension and
starting vector.
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Lemma 2.3. If Ug is a proper subset of Xg, then

δ(Xg,K(A,v1)) ≥ 1
‖Pg‖

.

Proof. Let Ub ≡ K(A,Pbv1) denote the complementary maximal reachable in-
variant subspace, and recall that Lemma 2.1 allows any v ∈ K(A,v1) to be written
as v = vg + vb for some vg ∈ Ug and vb ∈ Ub. Since Ug is a proper subset of Xg, there
exists some nonzero z ∈ Xg \ Ug such that z ⊥ Ug. For any vg ∈ Ug, we have

‖z− vg‖2 = ‖z‖2 + ‖vg‖2,

and so ‖z− vg‖ ≥ ‖z‖. Thus,

δ(Xg,K(A,v1)) = max
u∈Xg

min
v∈K(A,v1)

‖u− v‖
‖u‖

≥ min
v∈K(A,v1)

‖z− v‖
‖z‖ = min

vg∈Ug,vb∈Ub

‖z− vg − vb‖
‖z‖

≥ min
vg∈Ug,vb∈Ub

‖z− vg − vb‖
‖z− vg‖

= min
vg∈Ug,vb∈Ub

‖z− vg − vb‖
‖Pg(z− vg − vb)‖

≥ min
x∈Cn

‖x‖
‖Pgx‖

=
1
‖Pg‖

.

One might hope that polynomial restarts would provide a mechanism to reach
vectors in Xg \Ug, but this is not the case, as for any polynomial Φ, K(A,Φ(A)v1) ⊆
K(A,v1). In light of this, our analysis will focus on the gap convergence to the maxi-
mal reachable invariant subspace Ug. Since Ug ⊆ K(A,v1), a sufficiently large Krylov
subspace will exactly capture Ug, but typically such a Krylov space is prohibitively
large. Our analysis will describe a gap convergence rate that is typically descriptive
well before exact termination.

3. Convergence of Polynomial Restart Methods. We address two closely re-
lated, fundamental questions:

What is the gap δ(Ug,K�(A,v1)) between Ug and the Krylov space
as the dimension � increases?

The answer to this first question depends on the eigenvalue distribution and nonnor-
mality of A, as well as on the distribution of v1 with respect to Ug. This analysis
informs our approach to the second question:

Given a polynomial Φ that describes a restart filter, how does the
gap δ(Ug,K�(A, v̂1)) depend on v̂1 = Φ(A)v1, and how can we op-
timize the asymptotic behavior of this gap as additional restarts are
performed?

One goal of restarting is to mimic the performance of a full iteration (i.e., no
restarts), but with restricted subspace dimensions. If we consider Φ ≡

∏r
j=1 φj ,

where each φj is a polynomial associated with restarting a Krylov subspace at the
jth stage, a quantification of the gap δ(Ug,K(A,Φ(A)v1)) will lead to a convergence
rate for the restarting scheme.

3.1. Convergence Bounds for Krylov Subspaces with No Restarts. We shall
begin by discussing the distance of a Krylov space of dimension � from the reachable
subspace Ug, and then introduce the consequences for restarting. We use the notation
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Pk to denote the space of polynomials of degree at most k, and throughout assume
that v1 is such that m ≡ dim Ug > 0. Critical to our discussion is αg ∈ Pm, the
minimal polynomial of A with respect to Pgv1, i.e., the monic polynomial of lowest
degree such that αg(A)Pgv1 = 0.

For each ψ ∈ Pm−1, define the set of kth-degree Ug-interpolants,

Pψk ≡ {φ ∈ Pk : φ(A)Pgv1 = ψ(A)Pgv1}.

Each φ ∈ Pψk interpolates ψ at the good eigenvalues. Lemma 3.1 provides a full
characterization of Pψk , which we then apply to obtain bounds on the containment
gap. The sets Pψk were employed in [25, Cor. 5.5] to prove a version of our Lemma 3.2.

Lemma 3.1. If k < deg(ψ), Pψk is empty; if deg(ψ) ≤ k ≤ m − 1, Pψk = {ψ}; if
k ≥ m, Pψk comprises all polynomials φ ∈ Pk of the form

φ(z) = ψ(z)− φ̂(z)αg(z)

for some φ̂ ∈ Pk−m.
Proof. Suppose φ ∈ Pψk . Then φ − ψ is an annihilating polynomial of Pgv1:

(φ(A) − ψ(A))Pgv1 = 0. Since αg is a minimum-degree annihilating polynomial,
either deg(φ− ψ) < m and hence φ− ψ ≡ 0, or φ− ψ = φ̂αg with deg(φ̂) = deg(φ−
ψ)−m ≥ 0. Therefore, if k < deg(ψ), then deg(φ− ψ) < m and deg(φ) < deg(ψ), so
Pψk must be empty. If deg(ψ) ≤ k ≤ m−1, then φ ≡ ψ must hold and thus Pψk = {ψ}.
Finally, when k ≥ m, φ(z)− ψ(z) = φ̂(z)αg(z) must hold for some φ̂ ∈ Pk−m.

Lemma 3.2. For any � ≥ m = dimUg,

δ(Ug,K�(A,v1)) ≤ max
ψ∈Pm−1

min
φ∈Pψ�−1

‖φ(A)Pbv1‖
‖ψ(A)Pgv1‖

= max
ψ∈Pm−1

min
φ̂∈P�−m−1

∥∥[ψ(A)− φ̂(A)αg(A)
]
Pbv1

∥∥
‖ψ(A)Pgv1‖

,(3.1)

with the convention that P−1 = {0}.
Proof. For any x ∈ Ug = K(A,Pgv1) = Km(A,Pgv1), there is a unique polyno-

mial of degree m − 1 or less such that x = ψ(A)Pgv1. Now, v ∈ K�(A,v1) implies
v = φ(A)v1 for some φ ∈ P�−1. Thus

δ(Ug,K�(A,v1)) = max
ψ∈Pm−1

min
φ∈P�−1

‖φ(A)v1 − ψ(A)Pgv1‖
‖ψ(A)Pgv1‖

(3.2)

= max
ψ∈Pm−1

min
φ∈P�−1

‖φ(A)Pbv1 + [φ(A)− ψ(A)] Pgv1‖
‖ψ(A)Pgv1‖

≤ max
ψ∈Pm−1

min
φ∈Pψ�−1

‖φ(A)Pbv1‖
‖ψ(A)Pgv1‖

.

The formulation (3.1) follows from Lemma 3.1.
The estimate (3.1) will lead to a readily interpreted bound, similar in structure

to the main result of [3]. Toward this end, we restrict minimization over φ̂ ∈ P�−m−1
to polynomials of the form φ̂(z) = ψ(z)p(z), where ψ ∈ Pm−1 is the polynomial being
maximized over, and p ∈ P�−2m is an arbitrary polynomial. This then gives

min
φ̂∈P�−m−1

∥∥[ψ(A)− φ̂(A)αg(A)
]
Pbv1

∥∥ ≤ min
p∈P�−2m

∥∥[ψ(A)− ψ(A)p(A)αg(A)
]
Pbv1

∥∥.
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To simplify the right-hand side further, we utilize Πb, the orthogonal projection onto
the complementary maximal reachable invariant subspace, Ub = K(A,Pbv1). Note
that ΠbPb = Pb, since Range(Πb) = Range(Pb), and Πb = Pb if and only if Ub ⊥ Ug.
Keeping in mind that A and Pb commute, we find

min
p∈P�−2m

‖ [ψ(A) − ψ(A)p(A)αg(A)] Pbv1‖

= min
p∈P�−2m

‖ [I− p(A)αg(A)] Πb ψ(A)Pbv1‖

≤ min
p∈P�−2m

‖[I− p(A)αg(A)]Πb‖ ‖ψ(A)Pbv1‖

≤ min
p∈P�−2m

(
κ(Ωb) max

z∈Ωb
|1− p(z)αg(z)|

)
‖ψ(A)Pbv1‖.(3.3)

Here Ωb is any compact subset of the complex plane containing all the bad eigenvalues
while excluding all the good. The constant κ(Ωb), introduced in [3], is the smallest
positive number such that the inequality

‖f(A) Πb‖ ≤ κ(Ωb) max
z∈Ωb

|f(z)|

holds uniformly for all functions f analytic on Ωb. This constant, together with the
choice of Ωb itself, will be our key mechanism for describing the effects of nonnormality
on convergence: κ(Ωb) ≥ 1 for all nontrivial Ωb, and κ(Ωb) > 1 is only possible when
A is nonnormal.1 In our bounds, enlarging Ωb generally decreases κ(Ωb) (provided the
new Ωb includes no additional eigenvalues), but also requires maximization in (3.3)
over a larger set, degrading the convergence rate. Flexibility in the choice of Ωb
will allow us to describe convergence for general non-Hermitian problems without
recourse to a diagonalizing similarity transformation or the Jordan canonical form.
Precise details are addressed in section 3.2.

Substituting (3.3) into the right-hand side of (3.1) gives our primary result for
Krylov methods without restarts.

Theorem 3.3. For all � ≥ 2m,
(3.4)

δ(Ug,K�(A,v1)) ≤
(

max
ψ∈Pm−1

‖ψ(A)Pbv1‖
‖ψ(A)Pgv1‖

)(
κ(Ωb)

)
min

p∈P�−2m
max
z∈Ωb

∣∣1− αg(z)p(z)
∣∣.

Compare this bound to the main result of [3]:
(3.5)

δ(Ug,K�(A,v1)) ≤ C0

(
max

ψ∈Pm−1

‖ψ(A)Pbv1‖
‖ψ(A)Pgv1‖

)(
κ(Ωb)κ(Ωg)

)
min

q∈P�−m

max
z∈Ωb

|q(z)|
min
z∈Ωg

|q(z)|
,

where the compact set Ωg ⊆ C \ Ωb contains all the good eigenvalues, and C0 = 1 if
Ub ⊥ Ug; otherwise C0 =

√
2. The constant κ(Ωg) is defined analogously to κ(Ωb).

The starting vector only affects the first parenthesized term, common to both
bounds. This constant can take any value in [0,∞); it is small when v1 is strongly
oriented toward Ug. Regardless, we will see that the starting vector does not affect
the predicted asymptotic convergence rate in either bound.

The bounds (3.4) and (3.5) differ in several interesting ways. First, they involve
different polynomial approximation problems. The new problem amounts to fixing

1In the language of dilation theory, Ωb is a K-spectral set for K = κ(Ωb); see [18].
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the value of the approximating polynomial q ∈ P�−m from (3.5) to be 1 at all the
good eigenvalues: if q ∈ P�−m with q(λ) = 1 for all good eigenvalues λ (with matching
multiplicities), then q must have the form q(z) = 1− αg(z)p(z) for some p ∈ P�−2m.
In the special case that Ωg consists only of the good eigenvalues, then

min
q∈P�−m

max{|q(z)| : z ∈ Ωb}
min{|q(z)| : z ∈ Ωg}

≤ min
p∈P�−2m

max{|1− αg(z)p(z)| : z ∈ Ωb}
min{|1− αg(z)p(z)| : z ∈ Ωg}

(3.6)

= min
p∈P�−2m

max
z∈Ωb

|1− αg(z)p(z)|.

When there is only a single good eigenvalue λ, and it is simple, then m = 1 and
assigning p(λ) = 1 amounts to scaling p. Thus equality holds in (3.6), and the two
polynomial approximation problems are identical. (In this case, one would always take
Ωg = {λ}, giving κ(Ωg) = 1.) For larger m, the new bound (3.4) can be somewhat
worse than (3.5). Note that gap convergence can commence as soon as the Krylov
subspace dimension � reaches m = dimUg. The approximation problem in (3.5)
captures this fact, while the new result (3.4) enforces a delay of m further iterations.
The examples in section 4.2 demonstrate how this extra delay can cause the quality
of our new bound to degrade as m increases, though the predicted convergence rate
does not suffer. Another notable difference between (3.4) and (3.5) is the second
parenthetical constant in each bound: (3.4) avoids the factor κ(Ωg) ≥ 1.

3.2. The Size of κ(Ω). What governs the size of the constants κ(Ωb) and κ(Ωg)?
We present several upper bounds derived in [3]. First, take Ω to be a set of non-
defective eigenvalues, and let the columns of U be an eigenvector basis for the corre-
sponding invariant subspace. Then

(3.7) κ(Ω) ≤ ‖U‖‖U+‖,

where U+ is the pseudoinverse of U. When A is Hermitian (or otherwise normal),
one can always select an orthogonal basis of eigenvectors, and thus κ(Ω) = 1.

On the other hand, nonnormal matrices can have poorly conditioned eigenvector
bases (or lack a complete basis altogether). In such situations, ‖U‖‖U+‖ will be
large, and convergence bounds incorporating (3.7) are often pessimistic. The problem
typically stems not from a poor bound in (3.7), but from the fact that Ω is too
small. Thus we seek bounds for larger Ω. One natural approach is to consider the
ε-pseudospectrum of A, defined as

Λε(A) ≡ {z ∈ C : ‖(zI−A)−1‖ ≥ ε−1},

with the convention that ‖(zI−A)−1‖ =∞ if z is an eigenvalue of A; see, e.g., [27].
If Ωε is a set whose boundary is a finite union of Jordan curves enclosing some com-
ponents of Λε(A) for a fixed ε > 0, then a standard contour integral argument leads
to the bound

(3.8) κ(Ωε) ≤
L(∂Ωε)

2πε
,

where L(∂Ωε) denotes the boundary length of Ωε. The ability to adjust ε provides
flexibility in our ultimate convergence bounds.

The bounds (3.4) and (3.5) can differ significantly when κ(Ωg)� 1. If the good
eigenvalues are ill-conditioned (more precisely, if the associated eigenvectors form
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an ill-conditioned or defective basis for Ug), κ(Ωg) can be large unless Ωg extends
well beyond the immediate vicinity of the good eigenvalues. However, in taking Ωg
large to reduce κ(Ωg), the asymptotic convergence rate degrades, since the optimal
polynomials in (3.5) are small on Ωb, while remaining large on Ωg. Thus, when the
good eigenvalues are poorly conditioned, (3.5) can actually improve upon the old
bound, as illustrated in section 4.3.

3.3. ConvergenceBounds forRestartedKrylov Subspaces. Having established
bounds for the basic case of full orthogonalization, we now address a more pressing
issue for practical computations, the potential for attaining gap convergence through
polynomial restarting. In particular, we will revise the previous estimates by replacing
the starting vector v1 by v̂1 ≡ Φ(A)v1, where Φ is the product of all the previous
restart polynomials. We shall assume that the dimension of our restarted Krylov
subspace is fixed at � = 2m. In this case, (3.2) takes the form

δ(Ug,K�(A, v̂1)) = max
ψ∈Pm−1

min
φ∈P2m−1

‖φ(A)Φ(A)v1 − ψ(A)Pgv1‖
‖ψ(A)Pgv1‖

.(3.9)

We assume that Φ has M distinct roots τj ∈ C\Ωg, and we shall let Ψ be the unique
polynomial of degree M − 1 that interpolates 1/αg at these roots, so that Ψ(τj) =
1/αg(τj) for 1 ≤ j ≤M . Now, consider the polynomial

1−Ψ(z)αg(z).

This polynomial is of degree at most M + m − 1 and has a root at each of the τj .
Hence, this polynomial must be of the form

φ̂(z)Φ(z) ≡ 1−Ψ(z)αg(z)

for some φ̂ ∈ Pm−1. Thus, for any given polynomial ψ ∈ Pm−1,

min
φ∈P2m−1

‖φ(A)Φ(A)v1 − ψ(A)Pgv1‖
‖ψ(A)Pgv1‖

≤ ‖ψ(A)φ̂(A)Φ(A)v1 − ψ(A)Pgv1‖
‖ψ(A)Pgv1‖

=

∥∥∥ψ(A)φ̂(A)Φ(A)Pbv1 +
[
ψ(A)φ̂(A)Φ(A)− ψ(A)

]
Pgv1

∥∥∥
‖ψ(A)Pgv1‖

=

∥∥∥ψ(A)φ̂(A)Φ(A)Pbv1 + ψ(A)
[
φ̂(A)Φ(A)− I

]
Pgv1

∥∥∥
‖ψ(A)Pgv1‖

=
‖ [I−Ψ(A)αg(A)]ψ(A)Pbv1 − ψ(A)Ψ(A)αg(A)Pgv1‖

‖ψ(A)Pgv1‖

=
‖ [I−Ψ(A)αg(A)]ψ(A)Pbv1‖

‖ψ(A)Pgv1‖
.

By the same argument preceding the statement of Theorem 3.3, one has

‖ [I−Ψ(A)αg(A)]ψ(A)Pbv1‖ ≤ κ(Ωb) max
z∈Ωb

|1−Ψ(z)αg(z)| ‖ψ(A)Pbv1‖,
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and using this inequality in (3.9) gives

δ(Ug,K�(A, v̂1)) ≤
(

max
ψ∈Pm−1

‖ψ(A)Pbv1‖
‖ψ(A)Pgv1‖

)
κ(Ωb) max

z∈Ωb
|1−Ψ(z)αg(z)| .(3.10)

This analysis is particularly applicable to the implicitly restarted Arnoldi (IRA)
method [24], implemented in the ARPACK library [16] and MATLAB’s eigs com-
mand. At the end of every IRA outer iteration, with appropriate choice of the restart
dimension, we obtain a 2m-step Arnoldi factorization. This factorization gives a basis
for K2m(A, v̂1) with v̂1 = Φ(A)v1, where Φ is the product of all of the filter polyno-
mials φj that have been applied at previous IRA outer iterations. Since we are free
to choose the roots of Φ (i.e., the interpolation points τj that define Ψ), we should be
able to make the quantity

max
z∈Ωb

∣∣1−Ψ(z)αg(z)
∣∣

arbitrarily small as the degree of Ψ increases, i.e., with further outer iterations.

3.4. Establishing the Asymptotic Convergence Rate. What do bounds (3.4)
and (3.10) imply about the asymptotic behavior of Krylov subspace eigenvalue algo-
rithms? In particular, we wish to know how quickly the approximation

min
p∈P�−2m

max
z∈Ωb

∣∣1− αg(z)p(z)
∣∣

goes to zero with increasing �, and, for restarted iterations, how to select the polyno-
mial Ψ to minimize

max
z∈Ωb

∣∣1−Ψ(z)αg(z)
∣∣.

We begin by recalling a basic result from classical approximation theory (see, e.g.,
[10, 29]). Consider the behavior of

(3.11) min
p∈Pk

max
z∈Ωb

∣∣f(z)− p(z)
∣∣

as k →∞, where f is some function analytic on Ωb. First, suppose Ωb is the unit disk,
Ωb = {|z| ≤ 1}, and let z0 be the singularity of f with smallest modulus. Expand f
in a Taylor series about z = 0 and approximate the optimal degree-k polynomial by
the first k terms of the series. From the Taylor remainder formula we conclude that

lim sup
k→∞

min
p∈Pk

max
|z|≤1

∣∣f(z)− p(z)
∣∣1/k ≤ 1

|z0|
.

In fact, one can replace the inequality with equality, for although there are usually
better choices for p than the Taylor polynomial, no such choice does better asymptot-
ically. Thus, we say that (3.11) converges at the asymptotic rate 1/|z0|. The further
the singularity z0 is from Ωb, the faster the convergence rate.

Now let Ωb be any connected set whose boundary ∂Ωb is a Jordan curve. The
Riemann mapping theorem ensures the existence of a conformal map G taking the
exterior of Ωb to the exterior of the unit disk with G(∞) = ∞ and G′(∞) > 0. We
will use the map G to reduce the present Ωb to the simpler unit disk case. In particular,
the convergence rate now depends on the modulus of the image of the singularities of
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f . We set f(z) = 1/αg(z), so the singularities of f are simply the good eigenvalues
of A. In particular, define

ρ ≡
(

min
j=1,...,L

|G(λj)|
)−1

.

We may then apply a result from classical approximation theory to characterize the
asymptotic quality of polynomial approximations to 1/αg [10, 29].

Theorem 3.4.

lim sup
k→∞

min
p∈Pk

max
z∈Ωb

∣∣∣ 1
αg(z)

− p(z)
∣∣∣1/k = ρ.

The image of the circle {|z| = ρ−1} forms a curve C ≡ G−1({|z| = ρ−1}) exterior
to Ωb. This critical curve contains at least one good eigenvalue, with all bad and no
good eigenvalues in its interior. An example of this mapping is given in Figure 4.1
of the next section. Moving a good eigenvalue anywhere on C has no effect on the
convergence rate. For the approximation problem in (3.4), we have

min
p∈P�−2m

max
z∈Ωb

∣∣1− αg(z)p(z)
∣∣ ≤ α0 min

p∈P�−2m
max
z∈Ωb

∣∣1/αg(z)− p(z)
∣∣,

where α0 ≡ maxz∈Ωb |αg(z)|. Thus Theorem 3.4 implies

lim sup
�→∞

min
p∈P�−2m

max
z∈Ωb

∣∣1− αg(z)p(z)
∣∣1/�

≤
(

lim
�→∞

α
1/�
0

)
lim sup
�→∞

[
min

p∈P�−2m
max
z∈Ωb

∣∣1/αg(z)− p(z)
∣∣]1/�

= ρ.

Of course, asymptotic results for Krylov iterations without restarts must be put in the
proper perspective: Ug ⊆ K�(A,v1) for some finite �, implying δ(Ug,K�(A,v1)) = 0.
Our primary goal is to obtain an asymptotic result for restarted iterations, where
by restricting the subspace dimension we generally do not obtain exact convergence.
Instead, we strive to drive δ(Ug,K�(A, v̂1)) to zero by judiciously choosing the restart
polynomial Φ, where v̂1 = Φ(A)v1. In particular, we wish to mimic the optimization
in Theorem 3.4 by constructing Φ to interpolate 1/αg at asymptotically optimal points
in Ωb. The following are some well-known choices for these points:

• Fejér points of order k: {G−1(z) : zk = 1};
• Fekete points of order k: {z1, . . . , zk} ⊆ Ωb that maximize

∏
j �=k |zj − zk|;

• Leja points: Given {z1, . . . , zk−1}, set zk ≡ arg maxz∈Ωb

∏k−1
j=1 |z − zj |.

In all cases, these points fall on the boundary of Ωb. Given G, the Fejér points are
simplest to compute, while the Leja points are the most straightforward to implement
in software [1], as increasing the approximating polynomial degree simply adds new
Leja points without altering the previous ones. In contrast, all Fejér and Fekete points
typically change as the order increases. The following classical result can be found
in [10, sect. II.3] and the related papers [9, 19].

Theorem 3.5. Let qM ∈ PM−1 be a polynomial that interpolates 1/αg at order-
M Fejér, Fekete, or Leja points for Ωb. Then

lim sup
M→∞

max
z∈Ωb

∣∣∣ 1
αg(z)

− qM (z)
∣∣∣1/M = ρ.

This interpolation result immediately gives an asymptotic convergence bound on
the right of inequality (3.10) for restarted Krylov methods.
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Corollary 3.6. Let ΨM interpolate 1/αg(z) at the order-M Fejér, Fekete, or
Leja points for Ωb. Then

lim sup
M→∞

[
max
z∈Ωb

|1−ΨM (z)αg(z)|
]1/M

= ρ.

Thus, the restarted iteration recovers the asymptotic convergence rate ρ. In
practice, we have M = νm after ν outer iterations, each of which is restarted with
a degree-m polynomial. Every outer iteration should, in the asymptotic regime, de-
crease the residual by the factor ρm. (In practice, one is not restricted to degree-m
polynomials—we simply fixed this degree to simplify the derivation. Increasing the
dimension beyond m has no effect on our convergence analysis.)

If we convert the lim sup statement into a direct bound on δ(Ug,K(A, v̂1)), we
obtain

δ(Ug,K�(A, v̂1)) ≤
(

max
ψ∈Pm−1

‖ψ(A)Pbv1‖
‖ψ(A)Pgv1‖

)
κ(Ωb) max

z∈Ωb
|1−Ψ(z)αg(z)|

≤ C1 C2 Cr r
M

for any r > ρ, where C1 = maxψ∈Pm−1 ‖ψ(A)Pbv1‖/‖ψ(A)Pgv1‖ and C2 = κ(Ωb).
The constant Cr = Cr(αg,Ωb) accounts for transient effects in the polynomial ap-
proximation problem [10, sect. II.2]. The constant C2 incorporates the nonnormality
of A acting only on Ub; nonnormality associated with both good and bad eigenvalues
influences the constant C1, which describes the bias in the starting vector toward Ug.

In summary, a restarted iteration can recover the same asymptotic convergence
rate predicted for full orthogonalization iteration with a fixed Ωb. This comforting
conclusion hides several subtleties. First, the restarted iteration locks in a fixed Ωb
through its construction of the restart polynomial Φ. Without restarts, on the other
hand, one is free to choose Ωb to optimize the bound (3.4) for each iteration. At early
stages, a large Ωb may yield a small κ(Ωb) but a slow rate; later in the iteration, a
reduced Ωb can give a sufficiently improved rate to compensate for the corresponding
increase in κ(Ωb). Second, the restarted iteration must somehow determine the set Ωb.
Precise a priori information is rare, so Ωb must be found adaptively. This has been
successfully implemented for Hermitian problems using Leja points [1, 5], and similar
ideas have been advanced for general matrices [12]. In practice, a different approach
not explicitly derived from potential theory, called exact shifts [24], has proved to be
very effective. As seen in the experiments of section 4.4, exact shifts can effectively
determine the region Ωb.

4. Examples. We now demonstrate the accuracy of the convergence bound (3.4)
and the use of related potential-theoretic tools in a variety of circumstances, with
matrices ranging from Hermitian to far from normal. Our examples complement
those provided in [3, sect. 6]. This section closes with a performance comparison of
restarting strategies for non-Hermitian examples with various Ωb. In all cases, the
Krylov subspaces are generated from the starting vector v1 = (1, 1, . . . , 1)T .

4.1. Schematic Illustration. Our first example illustrates use of the tools of sec-
tion 3.4 to predict the asymptotic convergence rate of full Krylov iterations. We con-
struct A to be a normal matrix whose spectrum comprises 1000 bad eigenvalues that
randomly cover an arrow-shaped region in the complex plane with uniform probability,
together with the three rightmost good eigenvalues, {− 1

4 , 0,
1
4}, well-separated from
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Bound bad eigenvalues
within Ωb.

✲

Conformally map C \ Ωb
to the exterior of the unit disk.

❄

Find lowest curve of constant
convergence rate that intersects

a good eigenvalue.

✛

Inverting map to original
domain gives contours of equivalent
convergence rates and asymptotically

optimal interpolation points.

❏
❏
❏
❏
❏

Fig. 4.1 Schematic illustration showing calculation of the asymptotic convergence rate. The rate
predicted by (3.4) would not change if new good eigenvalues were added on or outside the
outermost curve in the final image. The small circles on the last two images show the
Fejér points of order 20 for the exterior of the unit circle and the arrow, respectively.

the arrow. Without loss of generality, we take A to be diagonal. (Section 4.4 illus-
trates the complexities that nonnormality and restarting introduce to this example.)

Figure 4.1 demonstrates the procedure outlined in section 3.4 for estimating the
asymptotic convergence rate. The bad eigenvalues are enclosed within the region
Ωb, taken to be the arrow over which the bad eigenvalues are distributed. The ex-
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Fig. 4.2 Gap convergence and two bounds based on (3.4). The better bound solves the minimax
approximation problem directly, while the lesser bound approximates the optimal polynomial
by interpolating 1/αg at Fejér points. Although this approximation procedure degrades the
bound, it does not affect the asymptotic convergence rate.

terior of this region is conformally mapped to the exterior of the unit disk. Since
Ωb is a polygon, we can compute this map G using a Schwarz–Christoffel transfor-
mation, implemented in Driscoll’s SC Toolbox [6]. In this domain, the polynomial
approximation problem is straightforward: the convergence rate is determined by the
modulus of the singularities G(λj) alone. Thus, level sets of constant convergence rate
are simply concentric circles. Applying G−1 to any of these level sets gives a curve
of constant convergence rate exterior to the original Ωb domain. If additional good
eigenvalues were added on or beyond this critical level curve, the predicted asymp-
totic convergence rate would not change. In the present case, the predicted asymptotic
convergence rate is approximately 0.629.2 Driscoll, Toh, and Trefethen apply similar
potential-theoretic ideas to the iterative solution of linear systems [7].

Figure 4.2 shows the bound (3.4) for this example. This figure compares true
gap convergence to two versions of the new bound. For the most accurate bound,
shown as a broken line, the minimax approximation problem of (3.4) is solved exactly
using the COCA package [8] to compute best uniform approximation to f(z) ≡ 1 by
polynomials of the form αg(z)p(z). Using a monomial basis for p(z), this procedure
becomes highly ill-conditioned as the degree increases, so we only show results for
early iterations. As an alternative, we illustrate an upper bound on (3.4) obtained by
replacing the optimal polynomial p ∈ P�−2m by the polynomial that interpolates 1/αg
at the order �−2m+1 Fejér points of the arrow. (The order-20 Fejér points are shown
as small circles in the final image of Figure 4.1.) These points were computed using the
SC Toolbox, followed by high-precision polynomial interpolation in Mathematica. As
they are asymptotically optimal interpolation points, the convergence rate obtained
by the interpolation procedure must match that predicted by the conformal map and
that realized by exactly solving the minimax problem in (3.4). Indeed, this is observed
in Figure 4.2, though the Fejér bound is roughly two orders of magnitude larger than
the optimal minimax bound.

2In practice, one is more likely to have only an estimate, say, for the convex hull of the spec-
trum. Replacing the arrow by its convex hull increases the predicted convergence rate to approxi-
mately 0.647.
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Fig. 4.3 Comparison of convergence bounds for the Hermitian example with a single good eigen-
value. In this special case, the bounds (3.4) and (3.5) are identical.

4.2. Hermitian Examples. We next examine the bound (3.4) applied to several
Hermitian examples and compare results to the bound (3.5) from [3]. In this situation,
and indeed for any normal A, one should take Ωg to be the set of good eigenvalues,
giving κ(Ωg) = 1. Hence (3.5) is superior to (3.4), as we established in equation (3.6).

Let A be a diagonal matrix with 200 bad eigenvalues uniformly distributed on
Ωb = [−1, 0]. First suppose there is one good eigenvalue, λ1 = 1/4, so Theorem 3.3
reduces to

δ(Ug,K�(A,v1)) ≤ ‖Pbv1‖
‖Pgv1‖

min
p∈P�−2

max
z∈Ωb

∣∣1− p(z)(z − λ1)
∣∣∣,

while the bound (3.5) reduces to

δ(Ug,K�(A,v1)) ≤ ‖Pbv1‖
‖Pgv1‖

min
q∈P�−1

max{|q(z)| : z ∈ Ωb}
|q(λ1)| .

Here we have used the fact that κ(Ωb) = κ(Ωg) = 1 since A is Hermitian, and hence
normal. As noted in section 3.1, the two bounds are identical in this m = 1 case:

min
q∈P�−1

max{|q(z)| : z ∈ Ωb}
|q(λ1)| = min

q∈P�−1
q(λ1)=1

max
z∈Ωb

|q(z)|.

(This is essentially the same polynomial approximation problem as in Saad’s Proposi-
tion 2.1 [22].) Posed over Ωb = [−1, 0], this optimization problem is solved by suitably
normalized and shifted Chebyshev polynomials. Figure 4.3 illustrates the results.

How do the bounds evolve as the number of good eigenvalues increases? If addi-
tional good eigenvalues are added to the right of λ1 = 1/4, the bounds are no longer
identical. Since the Chebyshev polynomials used to approximate zero on Ωb = [−1, 0]
in the single good eigenvalue case grow monotonically in magnitude outside Ωb, we
can use those same polynomials to approximate the term

min
q∈P�−m

max{|q(z)| : z ∈ Ωb}
min{|q(z)| : z ∈ Ωg}

in (3.5). Since A is normal, one should take Ωg to be the set of good eigenvalues.
The addition of new eigenvalues to the right of 1/4 will not alter the asymptotic



508 CHRISTOPHER A. BEATTIE, MARK EMBREE, AND D. C. SORENSEN

0 3 6 10 15 20 25 30 35 40 45 50
10

−15

10
−10

10
−5

10
0

10
5 gap

new bound (3.4)
old bound (3.5)

iteration, �

δ(
U g
,K

�
(A
,v

1
))

0 6 12 15 20 25 30 35 40 45 50
10

−15

10
−10

10
−5

10
0

10
5 gap

new bound (3.4)
old bound (3.5)

iteration, �

δ(
U g
,K

�
(A
,v

1
))

Fig. 4.4 Comparison of convergence bounds for the Hermitian example again, but now with three
good eigenvalues (left) and six good eigenvalues (right). As the number of good eigenvalues
increases, the new bound degrades in comparison with (3.5), but the predicted asymptotic
rate remains accurate. Note the transient stagnation of the new bound due to the opti-
mization over P�−2m rather than P�−m for the six-eigenvalue case.

convergence rate derived from (3.5). The same is true for (3.4): the critical factor
determining that convergence rate is the singularity in 1/αg nearest to Ωb. Adding
new eigenvalues to the right of 1/4 adds more distant singularities to 1/αg without
altering the asymptotics.

Though neither convergence rate degrades, the new bound predicts a longer tran-
sient phase before the asymptotic rate is realized. This delay, together with the fact
that (3.4) gives up two polynomial degrees in the approximation problem for every
good eigenvalue (the optimization is over p ∈ P�−2m, as opposed to q ∈ P�−m in (3.5)),
causes the new bound to degrade as m grows, though the convergence rate remains
descriptive. Figure 4.4 illustrates these properties, first for three good eigenvalues,
{ 1

4 ,
3
8 ,

1
2}, and then for six good eigenvalues, { 1

4 ,
3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8}.

4.3. Defective Examples. Our next examples illustrate the new bound (3.4) for
nondiagonalizable matrices, illustrating the use of pseudospectra to compute conver-
gence bounds. We include a situation where (3.4) is superior to (3.5) for a matrix
with good eigenvalues that are highly sensitive to perturbations.

First, consider the matrix

A =
(

J6(0, 1) 0
0 J100(− 5

2 , 1)

)
,

where Jk(λ, γ) denotes a k-dimensional Jordan block with eigenvalue λ and off-
diagonal entry γ,

Jk(λ, γ) =




λ γ

λ
. . .
. . . γ

λ


 ∈ Ck×k;

all unspecified entries are zero.
We seek the good eigenvalue λ1 = 0, a defective eigenvalue with multiplicity

m = 6. Since A is nondiagonalizable, we must take Ωb and Ωg to be larger sets than
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Fig. 4.5 Comparison of convergence bounds for a nondiagonalizable example. The containing sets
are defined as taking Ωg = Λε(J6(0, 1)) and Ωb = Λε(J100(− 5

2 , 1)) for ε = 10−3. The
new bound (3.4) shown here is based on an approximation of the optimal polynomial by the
interpolant to 1/αg at Fejér points. The right plot shows Ωg and Ωb, with the eigenvalues
appearing as dots in the center of each circular region.

the eigenvalues themselves to get finite values for κ(Ωb) and κ(Ωg). The pseudospectra
of Jordan blocks Jk(λ, ε) are exactly circular [20] and thus provide convenient choices
for Ωg and Ωb. We take Ωg = Λε(J6(0, 1)) and Ωb = Λε(J100(− 5

2 , 1)) for ε = 10−3

in both cases. Figure 4.5 illustrates the corresponding convergence bounds. Here,
for the bound (3.4) we actually show an upper bound obtained by replacing the
optimal polynomial in (3.4) by the polynomial that interpolates 1/αg at Fejér points
for Ωb.

We emphasize that the choice of Ωg plays no role in the new bound (3.4). It does,
however, affect the asymptotic convergence rate of the bound (3.5); taking for Ωg
pseudospectral sets with smaller values of ε will improve the asymptotic convergence
rate (better for later iterations), but increase the leading constant (worse for early
iterations). The value ε = 10−3 is a good balance for the range of iterations shown
here. Regardless of the choice of Ωg, the asymptotic rate never beats the one derived
from the new bound (3.4).

Now suppose the bad eigenvalue remains the same, but we increase the sensitivity
of the good eigenvalue, replacing J6(0, 1) with J6(0, 100). The only effect this has on
the new bound (3.4) is a slight change in the constant C1 describing bias in the starting
vector. (The same change also effects (3.5).) Since the location and multiplicity
of the eigenvalue have not changed, αg remains as before, as does the polynomial
approximation problem, and hence the asymptotic convergence rate from (3.4).

The bound (3.5), on the other hand, changes significantly. Enlarging the off-
diagonal entry γ in the good Jordan block corresponds to a significant increase in
the size of the pseudospectral set Ωg = Λε(J6(0, γ)). In particular, replacing γ = 1
by γ = 100 increases the radius of Ωg = Λε(J6(0, γ)) by a factor of roughly 45.
We can’t use ε = 10−3 for both Ωg and Ωb, as the two sets would intersect, and
thus the approximation problem in (3.5) would predict no convergence. Instead, we
fix Ωb = Λε(J100(− 5

2 , 1)) for ε = 10−3, but reduce the value of ε used to define
Ωg = Λε(J6(0, 100)). In particular, we must take ε ≈ 10−9 before Ωg and Ωb are
disjoint. We find that using ε = 10−13 for Ωg provides a good bound, and it is
this value we use in Figure 4.6. Increasing γ in the good Jordan block dramatically
increases the constant term in the bound (3.5). Taking γ ever larger shows that (3.5)
can be arbitrarily worse than (3.4) in this special situation.
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Fig. 4.6 Analogue of Figure 4.5, but with the good Jordan block J6(0, 1) replaced by J6(0, 100), thus
increasing the sensitivity of the good eigenvalues. Now the new bound (3.4) is superior
to (3.5).
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Fig. 4.7 First restart example: Exact shifts give similar convergence to the optimal iteration with
no restarts; restarting with shifts at the degree-20 Fejér points for the arrow-shaped Ωb
gives slower convergence. The saw-toothed shape indicates that accurate estimates of the
good invariant subspace are lost when a restart is performed.

4.4. Polynomial Restart Examples. Our final examples illustrate the perfor-
mance of restarted iterations applied to nonnormal matrices. In particular, we modify
the example from section 4.1: A is the direct sum of diag(− 1

4 , 0,
1
4 ), which contains

the perfectly conditioned good eigenvalues, and Abad ∈ C1000×1000, whose diagonal
contains the same bad eigenvalues shown in Figure 4.1, ordered by increasing real part.
Unlike the example in section 4.1, we add entries to the first and second superdiago-
nal of Abad, making the matrix nonnormal. We are interested in the performance of
shifting strategies as this nonnormality varies.

First, place −1/2 on the first superdiagonal and −1/4 on the second diagonal of
any row of Abad with diagonal entry λ with Reλ < −3. This makes the leftmost
part of the spectrum highly sensitive to perturbations, with essentially no impact
on the good eigenvalues, which are well-separated from these sensitive eigenvalues.
Figure 4.7 shows gap convergence for three different iterations: no restarts, restarting
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Fig. 4.8 On the top, ε-pseudospectrum of Abad for the first restart example, with ε =
10−1, 10−2, 10−4, . . . , 10−20. The bad eigenvalues fill an arrow-shaped region; the three
good eigenvalues are marked by ×. The bottom plots show the magnitude of the aggregate
exact shift polynomial (left) and the degree-20 Fejér polynomial (right). Roots of these
polynomials are shown as white dots. Areas with the same color yield the same conver-
gence rate; the broken line marks the lowest level curve of the restart polynomial that
passes through a good eigenvalue. The solid lines denote the boundaries of the 10−1- and
10−2-pseudospectra of Abad.

with exact shifts, and restarting with Fejér points. These last two methods require
some explanation. In both cases, the Krylov subspace is built out to dimension 23,
and at the end of each outer iteration, the current starting vector is refined with a
polynomial filter, v1 ← φ(A)v1, where deg(φ) = 20. For exact shifts, the roots of φ
are taken to be the 20 leftmost Arnoldi Ritz values determined from the degree-23
Krylov subspace. For Fejér shifts, the roots of φ are the order-20 Fejér points on
the boundary of Ωb,3 which we take to be the arrow that tightly covers the bad
eigenvalues, as shown in Figure 4.1. Exact shifts closely capture the performance of
the full iteration, while the Fejér shifts exhibit a sawtooth convergence curve due to
the fact that the full 23-dimensional Krylov subspace contains accurate estimates of
Ug, but these degrade upon restarting.

Figure 4.8 compares pseudospectra of Abad (top) with the relative magnitude of
the aggregate restart polynomial Φ for exact shifts and Fejér shifts. The broken line

3Strictly speaking, to obtain asymptotically optimal performance we should not repeatedly apply
the same degree-20 Fejér polynomial, but rather use Leja points that add distinct new shifts at each
outer iteration. We expect our simpler approach to yield qualitatively similar behavior.
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Fig. 4.9 Second restart example: Fejér points for the arrow-shaped set Ωb tightly enclosing the
eigenvalues yield little convergence, while exact shifts and Fejér points for the ε = 10−1

pseudospectrum both give convergence comparable to the full orthogonalization method.
Hence, imprecise spectral information leads to more rapid convergence than precise spectral
information.

on these plots shows the critical curve that determines the convergence rate. The
asymptotic convergence rates are very similar for these iterations, so why does the
Fejér approach (where nonnormality has no influence on shift selection) fare so much
worse in Figure 4.7? Note that there are points in the 10−2-pseudospectrum of Abad
that are outside the critical level curve that determines the convergence rate (broken
line). Krylov methods, at early iterations, are drawn to such false approximate eigen-
values, which appear more prominent than the good eigenvalues. The exact shifts
avoid this difficulty: the critical level curve for the potential they generate includes
all points in the 10−1-pseudospectrum, and some beyond.

Next, modify the previous example by changing the −1/2 and −1/4 entries in
the superdiagonal of Abad to −2 and −1, respectively. We repeat the same restart-
ing experiments as before, with results shown in Figure 4.9. The leftmost eigenvalues
remain highly sensitive to perturbations, but now in a fashion rather different geomet-
rically from the previous case, as can be seen in the pseudospectral plot in Figure 4.10.
Exact shifts perform nearly as well as the full iteration, but now the Fejér shifts for
the arrow enclosing the eigenvalues do not lead to any notable convergence in these
iterations. There are points in the 10−20-pseudospectrum of Abad that are well out-
side the critical convergence level curve. Though we predict a superior convergence
bound for these Fejér shifts, the constant κ(Ωb) is enormous. On the other hand, if
we take Ωb to be the 10−1-pseudospectrum of Abad, then the Fejér points for this
set yield convergence similar to that realized by exact shifts. (These Fejér shifts are
derived with knowledge of the nonnormality of Abad.) This is another example where
inexact knowledge of the eigenvalues (as derived via the exact shifts, which are Ritz
values [24]) leads to markedly better performance than that obtained by exploiting
exact spectral information. For similar observations in the context of solving linear
systems of equations, see [17].
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Fig. 4.10 On the top left, ε-pseudospectrum of Abad for the second restart example, with ε =
10−1, 10−2, 10−4, . . . , 10−20. The bad eigenvalues fill an arrow-shaped region; the three
good eigenvalues are denoted by ×. The top right and bottom plots show the magnitude
of the aggregate exact shift polynomial (top right), the degree-20 Fejér polynomial for the
arrow (bottom left), and the degree-20 Fejér polynomial for the 10−1-pseudospectrum
(bottom right). The solid lines now denote the boundaries of the 10−1- and 10−20-
pseudospectra of Abad. The Fejér shifts for the arrow give essentially no convergence
for these iterations: though the predicted asymptotic convergence is better than the oth-
ers, the nonnormality constant κ(Ωb) will be enormous.

Conclusions. Our bounds for Krylov subspace eigenvalue algorithms describe
convergence in terms of three primary components:

• a constant influenced by the starting vector, the location of the eigenvalues,
and nonnormality;
• a constant that describes the conditioning of the undesired eigenvalues;
• a linear convergence rate that depends on the separation of the desired eigen-

values from the remainder of the spectrum.
More complicated behavior is often observed in practice: convergence frequently ac-
celerates as the iteration proceeds, eventually yielding convergence that is better than
any fixed linear rate. (For analysis of such “superlinear” convergence, see [3].) For
nonnormal problems, this behavior can be preceded by an early “sublinear” phase of
apparent stagnation.

The bound (3.10) suggests that a restarted Krylov iteration can recover the linear
convergence rate of the full iteration with no restarts, provided the polynomial filters
are designed according to potential-theoretic principles. In practice, one does not have
access to sufficient spectral information to determine such restart polynomials a priori;
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instead, one restarts using “exact shifts” [16, 24]. While our analysis does not explic-
itly address this restarting scheme, the computational examples in section 4 illustrate
its success. A rigorous convergence theory for exact shifts currently exists only in the
Hermitian setting [24]. The development of such a theory for non-Hermitian matrices
remains an important open problem.

Acknowledgments. We thank Rich Lehoucq and Jörg Liesen for their construc-
tive comments. The pseudospectra in section 4 were computed using software devel-
oped by Trefethen and Wright [28, 30].
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