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Abstract. The performance of Krylov subspace eigenvalue algorithms for large matrices can be
measured by the angle between a desired invariant subspace and the Krylov subspace. We develop
general bounds for this convergence that include the effects of polynomial restarting and impose no
restrictions concerning the diagonalizability of the matrix or its degree of nonnormality. Associated
with a desired set of eigenvalues is a maximum “reachable invariant subspace” that can be developed
from the given starting vector. Convergence for this distinguished subspace is bounded in terms
involving a polynomial approximation problem. Elementary results from potential theory lead to
convergence rate estimates and suggest restarting strategies based on optimal approximation points
(e.g., Leja or Chebyshev points); exact shifts are evaluated within this framework. Computational
examples illustrate the utility of these results. Origins of superlinear effects are also described.
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1. Setting. Let A be an n× n complex matrix with N ≤ n distinct eigenvalues
{λj}Nj=1 with corresponding eigenvectors {uj}Nj=1. (We do not label multiple eigen-
values separately and make no assertion regarding the uniqueness of the uj .) Each
distinct eigenvalue λj has geometric multiplicity nj and algebraic multiplicity mj (so

that 1 ≤ nj ≤ mj and
∑N

j=1 mj = n). We aim to compute an invariant subspace
associated with L of these eigenvalues, which for brevity we call the good eigenvalues,
labeled {λ1, λ2, . . . , λL}. We intend to use a Krylov subspace algorithm to approx-
imate this invariant subspace, possibly with the aid of restarts as described below.
The remaining N − L eigenvalues, the bad eigenvalues, are not of interest and we
wish to avoid excessive expense involved in inadvertently calculating the subspaces
associated with them.

The class of algorithms considered here draws eigenvector approximations from
Krylov subspaces generated by the starting vector v1 ∈ C

n,

K�(A,v1) = span{v1,Av1, . . . ,A
�−1v1}.

Such algorithms, including the Arnoldi and biorthogonal Lanczos methods reviewed in
section 1.1, differ in their mechanisms for generating a basis for K�(A,v1) and select-
ing approximate eigenvectors from this Krylov subspace. Though these approximate
eigenvectors are obvious objects of study, their convergence can be greatly compli-
cated by eigenvalue multiplicity and defectiveness; see [21]. The bounds developed in
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the following sections avoid these difficulties by instead studying convergence of the
Krylov subspace to an invariant subspace associated with the good eigenvalues as the
dimension of the Krylov subspace is increased.

Given two subspaces, W and V of C
n, the extent to which V approximates W is

measured (asymmetrically) by the containment gap (or just gap), defined as

δ(W,V) = sup inf
x∈W y∈V

‖y − x‖
‖x‖ = sin(ϑmax).

Here ϑmax is the largest canonical angle between W and a “closest” subspace V̂ of V

having dimension equal to dimW. (Throughout, ‖ · ‖ denotes the vector 2-norm and
the matrix norm it induces.) Notice that if dimV < dim W, then δ(W,V) = 1, while
δ(W,V) = 0 if and only if W ⊆ V. The gap can be expressed directly as the norm of
a composition of projections: If ΠW and ΠV denote orthogonal projections onto W

and V, respectively, then δ(W,V) = ‖(I−ΠV)ΠW‖ (see, e.g., Chatelin [7, sect. 1.4]).
The objective of this paper then is to measure the gap between Krylov subspaces

and an m-dimensional invariant subspace U of A associated with the good eigenval-
ues. We explore how quickly δ(U,K�(A,v1)) can be driven to zero as � is increased,
reflecting the speed of convergence, and how this behavior is influenced by the dis-
tribution of eigenvalues and nonnormality of A. Note that δ(U,K�(A,v1)) = 1 when
� < m. For � ≥ m, our bounds ultimately take the form

δ(U,K�(A,v1)) ≤ C0 C1 C2 min
φ∈P�−m

max{|φ(z)| : z ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

,(1.1)

where P� is the set of degree-� polynomials, and Ωgood and Ωbad are disjoint compact
subsets of C containing the good and bad eigenvalues, respectively. The constant
C0 reflects nonnormal coupling between good and bad invariant subspaces, while C2

reflects nonnormality within those two subspaces. The constant C1 principally de-
scribes the effect of starting vector bias, though it, too, is influenced by nonnormality.
In section 2 we identify the subspace U, which in common situations will be the entire
invariant subspace of A associated with the good eigenvalues, but will be smaller
when A is derogatory or the starting vector v1 is deficient. The basic bound (1.1)
is derived in section 3. Section 4 addresses the polynomial approximation problem
embedded in (1.1), describing those factors that determine linear convergence rates
or that lead to superlinear effects. Section 5 analyzes the constants C1 and C2, and
section 6 provides computational examples illustrating the bounds.

Since it becomes prohibitively expensive to construct and store a good basis for
K�(A,v1) when the dimension of A is large, practical algorithms typically limit the
maximum dimension of the Krylov subspace to some p � n. If satisfactory estimates
cannot be extracted from Kp(A,v1), then the algorithm is restarted by replacing v1

with some new v ∈ Kp(A,v1) that is, one hopes, enriched in the component lying
in the subspace U. Since this v is chosen from the Krylov subspace, we can write
v = ψ(A)v1 for some polynomial ψ with deg(ψ) < p. Our bounds also apply to this
situation, and ideas from potential theory, outlined in section 4, motivate particular
choices for the polynomial ψ.

The results presented here complement and extend earlier convergence theory,
beginning with Saad’s bound on the gap between a single eigenvector and the Krylov
subspace for a matrix with simple eigenvalues [32]. Jia generalized this result to
invariant subspaces associated with a single eigenvalue of a defective matrix, but
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these bounds involve the Jordan form of A and derivatives of approximating poly-
nomials [20]. Simoncini uses pseudospectra to describe block-Arnoldi convergence
for defective matrices [37]. Interpreting restarted algorithms in terms of subspace
iteration, Lehoucq developed an invariant subspace convergence theory incorporating
results from Watkins and Elsner [25]. Calvetti, Reichel, and Sorensen studied single
eigenvector convergence for Hermitian matrices using elements of potential theory [6].
A key feature of our approach is its applicability to general invariant subspaces, which
may be better conditioned than individual eigenvectors (see, e.g., [39, Chap. V]). No-
tably, we estimate convergence rates for defective matrices without introducing any
special choice of basis and without requiring knowledge of the Jordan form or any
related similarity transformation.

Finally, we note that other measures of convergence may be more appealing in
certain situations. Alternatives include Ritz values [20, 24], although convergence
behavior can be obscure for matrices that are defective (or nearly so). The subspace
residual is computationally attractive because it doesn’t require a priori knowledge of
the good invariant subspace. This measure can be related to gap convergence [17, 38].

1.1. Algorithmic context. Suppose V is an n×n unitary matrix that reduces
A to upper Hessenberg form; i.e., V∗AV = H for some upper Hessenberg matrix, H.
For any index 1 ≤ � ≤ n, let H� denote the �th principal submatrix of H:

H� =

⎡⎢⎢⎢⎣
h11 h12 · · · h1�

β2 h22 · · · h2�

. . .
. . .

...
β� h��

⎤⎥⎥⎥⎦ ∈ C
�×�.

The Arnoldi method [2, 32] builds up the matrices H and V one column at a time
starting with the unit vector v1 ∈ C

n, although the process is typically stopped well
before completion, with � � n. The algorithm only accesses A through matrix-vector
products, making this approach attractive when A is large and sparse.

Different choices for v1 produce distinct outcomes for H�. The defining recurrence
may be derived from the fundamental relation

AV� = V�H� + β�+1v�+1e
∗
� ,

where e� is the �th column of the � × � identity matrix. The �th column of H� is
determined so as to force v�+1 to be orthogonal to the columns of V�, and β�+1

then is determined so that ‖v�+1‖ = 1. Provided H� is unreduced, the columns
of V� constitute an orthonormal basis for the order-� Krylov subspace K�(A,v1) =
span{v1, Av1, . . . , A�−1v1}. Since V∗

� AV� = H�, the matrix H� is a Ritz–Galerkin
approximation of A on this subspace, as described by Saad [33]. The eigenvalues of H�

are called Ritz values and will, in many circumstances, be reasonable approximations
to some of the eigenvalues of A. An eigenvector of H� associated with a given Ritz
value θj can be used to construct an eigenvector approximation for A. Indeed, if
H�yj = θjyj , then the Ritz vector ûj = V�yj yields the residual

‖Aûj − θjûj‖ = |β�+1| |e∗�yj |.

When |β�+1| � 1, the columns of V� nearly span an invariant subspace of A. Small
residuals more often arise from negligible trailing entries of the vector yj , indicating
the most recent Krylov direction contributed negligibly to the Ritz vector ûj .
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Biorthogonal Lanczos methods have similar characteristics despite important dif-
ferences both in conception and implementation; see, e.g., [4]. In particular, different
bases for K�(A,v1) are generated, and the associated Ritz values can differ consid-
erably from those produced by the Arnoldi algorithm, even though the projection
subspace K�(A,v1) remains the same.

Our focus here avoids the complications of Ritz value convergence and remains
fixed on how well a good invariant subspace U is captured by K�(A,v1), without
regard to how a basis for K�(A,v1) has been generated.

1.2. Polynomial restarts. The first p steps of the Arnoldi or biorthogonal
Lanczos recurrence require p matrix-vector products of the form Avk, plus O(np2)
floating point operations for (bi)orthogonalization. For very large n and very sparse A
(say, with a maximum number of nonzero entries per row very much smaller than n),
the cost of orthogonalization will rapidly dominate as p grows. Polynomial restarting
is one general approach to alleviate this prohibitive expense. At the end of p+1 steps
of the recurrence, one selects some “best” vector v+

1 ∈ Kp+1(A,v1) and restarts the
recurrence from the beginning using v+

1 . Different restart strategies differ essentially
in how they attempt to condense progress made in the last p + 1 steps into the
vector v+

1 . Since any vector in Kp+1(A,v1) can be represented as ψp(A)v1 for some
polynomial ψp of degree p or less, a restart of this type can be expressed as

v+
1 ← ψp(A)v1.(1.2)

If subsequent restarts occur (relabeling v+
1 as v

(1)
1 ), then

v
(1)
1 ← ψ[1]

p (A)v1 (first restart),

v
(2)
1 ← ψ[2]

p (A)v
(1)
1 (second restart),

...

v
(ν)
1 ← ψ[ν]

p (A)v
(ν−1)
1 (νth restart).

We collect the effect of the restarts into a single aggregate polynomial of degree νp:

v
(ν)
1 ← Ψνp(A)v1,(1.3)

where Ψνp(λ) =
∏ν

k=1 ψ
[k]
p (λ) is called the filter polynomial.

Evidently, the restart vectors should retain and amplify components of the good
invariant subspace while damping and eventually purging components of the bad in-
variant subspace. One obvious way of encouraging such a trend is to choose the poly-
nomial Ψνp(λ) to be as large as possible when evaluated on the good eigenvalues while
being as small as possible on the bad eigenvalues. If the bad eigenvalues are situated
within a known compact set Ωbad (not containing any good eigenvalues), Chebyshev
polynomials associated with Ωbad are often a reasonable choice. When integrated with
the Arnoldi algorithm, this results in the Arnoldi–Chebyshev method [34] (cf. [18]).

This Chebyshev strategy requires either a priori or adaptively generated knowl-
edge of Ωbad, a drawback. Sorensen identified an alternative approach, called exact
shifts, that has proved extremely successful in practice. The filter polynomial Ψνp is
automatically constructed using Ritz eigenvalue estimates. Before each new restart
of the Arnoldi method, one computes the eigenvalues of H� and sorts the result-
ing � = k + p Ritz values into two disjoint sets Sgood and Sbad. The p Ritz values
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in the set Sbad are used to define the restart polynomial ψp(λ) =
∏k+p

j=k+1(λ − θj).
Morgan discovered a remarkable consequence of this restart strategy: The updated
Krylov subspace K�(A,v+

1 ), generated by the new starting vector v+
1 in (1.2) us-

ing exact shifts, satisfies K�(A,v+
1 ) = span{û1, û2, . . . , ûk,Aûj ,A

2ûj , . . . ,A
pûj} for

each index j = 1, 2, . . . , k [27]. Thus, Sorensen’s exact shifts will provide, in the stage
following a restart, a subspace containing every possible Krylov subspace of dimension
p that could be obtained with a starting vector that was a linear combination of the
good Ritz vectors (cf. [32]). Furthermore, Sorensen showed how to apply shifts implic-
itly, regenerating the Krylov subspace K�(A,v+

1 ) with only p matrix-vector products
in a numerically stable way. Analogous features can be verified for the restarted
biorthogonal Lanczos method using exact shifts to build polynomial filters. Such a
strategy has been explored in [16, 9].

Assume now that an Arnoldi or biorthogonal Lanczos process has proceeded �
steps past the last of ν restarts, each of which (for the sake of simplicity) has the
same order p. In the jth restart (1 ≤ j ≤ ν), we use shifts {µjk}pk=1. Define

Ψνp(λ) =

ν∏
j=1

p∏
k=1

(λ− µjk)

to be the aggregate restart polynomial after ν restarts. An iteration without restarts
will have p = ν = 0 and Ψνp(λ) = 1.

Let Kτ (A,v
(ν)
1 ) denote the Krylov subspace of order τ generated by the start-

ing vector v
(ν)
1 that is obtained after ν restarts. The following basic result follows

immediately from the observation that v
(ν)
1 = Ψνp(A)v1.

Lemma 1.1. For all τ ≥ 0, Kτ (A,v
(ν)
1 ) = Ψνp(A) Kτ (A,v1).

2. Reachable invariant subspaces. If the good eigenvalues are all simple,
then the associated invariant subspace is uniquely determined as the span of good
eigenvectors. However, if some of these eigenvalues are multiple, there could be a va-
riety of associated invariant subspaces. Nonetheless, single-vector Krylov eigenvalue
algorithms with polynomial restarts are capable of revealing only one of the many pos-
sible invariant subspaces for any given initial vector. Before developing convergence
bounds, we first characterize this distinguished invariant subspace precisely.

Let M be the cyclic subspace generated by the initial starting vector v1,

M = span{v1,Av1,A
2v1, . . . }.

M is evidently an invariant subspace of A and s ≡ dim(M) ≤ n. Since any in-
variant subspace of A that contains v1 must also contain Aτv1, M is the smallest
invariant subspace of A that contains v1. The s vectors of the Krylov sequence
{v1,Av1, . . . ,A

s−1v1} are linearly independent, and thus constitute a basis for M.
Recall that a linear transformation is nonderogatory if each eigenvalue has geomet-

ric multiplicity equal to 1; i.e., each distinct eigenvalue has precisely one eigenvector
associated with it, determined up to scaling.

Define A|M to be the restriction of A to M. The following result is well known;
see, e.g., [1], [13, Chap. VII].

Lemma 2.1. A|M is nonderogatory, and Kτ (A,v
(ν)
1 ) = Kτ (A|M,v

(ν)
1 ) ⊂ M.

Define αj to be the ascent (or index ) of the eigenvalue λj , i.e., the minimum
positive integer α such that Ker (A−λj)

α = Ker (A−λj)
α+1. This αj is the maximum

dimension of the nj different Jordan blocks associated with λj , and Ker (A − λj)
αj

then is the span of all generalized eigenvectors associated with λj .
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The spectral projection onto each subspace Ker (A−λj)
αj can be constructed in

the following coordinate-free manner; see, e.g., [23, sect. I.5.3]. For each eigenvalue
λj , 1 ≤ j ≤ N , let Γj be some positively oriented Jordan curve in C containing λj in
its interior and all other eigenvalues in its exterior. The spectral projection is defined
as

Pj ≡
1

2πi

∫
Γj

(z − A)−1 dz.

Pj is a projection onto the span of all generalized eigenvectors associated with λj . In
particular, Pjv1 will be a generalized eigenvector associated with λj and will generate
a cyclic subspace Kαj

(A,Pjv1) ⊆ Ker (A−λj)
αj . Let α̂j be the minimum index α̂ so

that Kα̂(A,Pjv1) = Kα̂+1(A,Pjv1). This α̂j is called the ascent with respect to v1 of
the eigenvalue λj . Notice that 1 ≤ α̂j ≤ αj and Kα̂j

(A,Pjv1) is the smallest invariant
subspace of A that contains Pjv1. Furthermore, Pjv1 is a generalized eigenvector of
grade α̂j associated with λj and α̂j < αj only if v1 is deficient in all generalized
eigenvectors of maximal grade αj associated with λj .

Define spectral projections Pgood and Pbad having ranges that are the maximal
invariant subspaces associated with the good and bad eigenvalues, respectively, as

Pgood =

L∑
j=1

Pj and Pbad =

N∑
j=L+1

Pj .

Note that Pgood + Pbad = I.
The following result in Lemma 2.2 characterizes M. The first statement, included

for comparison, is well known; the second is also understood, though we are unaware
of its explicit appearance in the literature. Related issues are discussed in [1], [13,
Chap. VII].

Lemma 2.2. C
n = ⊕N

j=1Ker(A − λj)
αj with

∑N
j=1 αj ≤ n, and

M = ⊕N
j=1Kα̂j

(A,Pjv1) with
∑N

j=1 α̂j = dimM.

Proof. Since
∑N

j=1 Pj = I, any x ∈ C
n can be written as x = Ix =

∑N
j=1 Pjx,

which shows that C
n ⊆ ⊕N

j=1Ker(A − λj)
αj . The reverse inclusion is trivial.

For the second statement, use
∑N

j=1 Pj = I to get, for any integer τ > 0,

v1 =

N∑
j=1

Pjv1, Av1 =

N∑
j=1

APjv1, . . . , Aτv1 =

N∑
j=1

AτPjv1.

Thus, for each integer τ > 0, Kτ (A,v1) ⊆ ⊕N
j=1Kα̂j

(A,Pjv1), and, in particular, for

τ sufficiently large this yields M ⊆ ⊕N
j=1Kα̂j

(A,Pjv1).
To show the reverse inclusion, note that for every j = 1, . . . , N , there is a poly-

nomial pj such that pj(A) = Pj . (This polynomial interpolates at eigenvalues:
pj(λj) = 1, pj has αj − 1 zero derivatives at λj , and pj(λk) = 0 for λk �= λj ;
see, e.g., [19, sect. 6.1].) Thus for any x ∈ ⊕N

j=1Kα̂j
(A,Pjv1), one can write

x =
N∑
j=1

gj(A)Pjv1 =

N∑
j=1

gj(A)pj(A)v1 ∈ M

for polynomials gj with degree not exceeding α̂j − 1. Thus ⊕N
j=1Kα̂j

(A,Pjv1) ⊆ M,

and so M = ⊕N
j=1Kα̂j

(A,Pjv1).
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Let Xgood and Xbad be the invariant subspaces of A associated with the good
and bad eigenvalues, respectively. Then define Ugood ≡ M ∩ Xgood and Ubad ≡
M ∩ Xbad. The following lemma develops a representation for Ugood and Ubad; it
shows that Ugood is the maximum reachable invariant subspace associated with the
good eigenvalues that can be obtained from a Krylov subspace algorithm started with
v1. “Maximum reachable invariant subspace” means that any invariant subspace U

associated with the good eigenvalues and strictly larger than Ugood is unreachable:
The angle between U and any computable subspace generated from v1 is bounded
away from zero independent of �, p, ν, and choice of filter shifts {µjk}.

Lemma 2.3.

Ugood = ⊕L
j=1Kα̂j

(A,Pjv1),

dim Ugood =

L∑
j=1

α̂j ≡ m,
and

Ubad = ⊕N
j=L+1Kα̂j

(A,Pjv1),

dim Ubad =

N∑
j=L+1

α̂j = s−m.

Furthermore, for any subspace U of Xgood that properly contains Ugood, i.e., Ugood ⊂
U ⊆ Xgood, convergence in gap cannot occur. For all integers � ≥ 1,

δ(U,K�(A,v
(ν)
1 )) ≥ 1

‖Pgood‖
> 0.

Proof. Since Kα̂j
(A,Pjv1) ⊆ Ker(A − λj)

αj , Lemma 2.2 leads to M ∩ Xgood =
⊕L

j=1Kα̂j
(A,Pjv1). Furthermore, dimKα̂j

(A,Pjv1) = α̂j implies that dimUgood =
m as defined above. The analogous results for Ubad follow similarly.

Note that Xbad = ⊕N
j=L+1Ker(A − λj)

αj so, for all � ≥ 0,

K�(A,v
(ν)
1 ) ⊆ M ⊆ Ugood ⊕ Xbad.

Thus any v ∈ K�(A,v
(ν)
1 ) can be decomposed as v = w1 + w2 for some w1 ∈ Ugood

and w2 ∈ Xbad. When Ugood is a proper subspace of U, there exists an x̂ ∈ U so that
x̂ ⊥ Ugood and ‖x̂‖ = 1. Note that ‖x̂ − w1‖ ≥ ‖x̂‖ = 1. Now,

min
v∈K�(A,v

(ν)
1 )

‖v − x̂‖ ≥ min
w1∈Ugood

w2∈Xbad

‖w1 + w2 − x̂‖

≥ min
w1∈Ugood

w2∈Xbad

‖w2 − (x̂ − w1)‖
‖x̂ − w1‖

≥ min
y∈Xgood

w2∈Xbad

‖w2 − y‖
‖y‖

≥

⎛⎝ max
y∈Xgood

w2∈Xbad

‖Pgood(w2 − y)‖
‖w2 − y‖

⎞⎠−1

=
1

‖Pgood‖
.

Thus,

δ(U,K�(A,v
(ν)
1 )) = max

x∈U
min

v∈K�(A,v
(ν)
1 )

‖v − x‖
‖x‖

≥ min
v∈K�(A,v

(ν)
1 )

‖v − x̂‖ ≥ 1

‖Pgood‖
.

This means that we have no hope of capturing any invariant subspace that contains a
(generalized) eigenspace associated with multiple Jordan blocks—at least when using
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a single vector iteration in exact arithmetic. On the other hand, convergence can
occur to the good invariant subspace Ugood, with a rate that depends on properties
of A, v1, and the choice of filter shifts {µjk}, as we shall see.

Almost every vector in an invariant subspace is a generalized eigenvector of maxi-
mal grade and so almost every starting vector will capture maximally defective Jordan
blocks. While easily acknowledged, this fact can have perplexing consequences for the
casual Arnoldi or biorthogonal Lanczos user, since eigenvectors of other Jordan blocks
may be unexpectedly “washed out.” Suppose A is defined as

A =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤⎥⎥⎥⎥⎦ .

A is in Jordan canonical form with the single eigenvalue λ = 1. Let ej denote the jth
column of the 5 × 5 identity matrix. Then e2 and e5 are eigenvectors of A, e1 and
e4 are generalized eigenvectors of grade 1 associated with the 2× 2 and 3× 3 Jordan
blocks, and e5 is a generalized eigenvector of grade 2 associated with the 3× 3 block.

For arbitrary β ∈ C, the vector v1 = [1 β 1 1 1 ]T generates a cyclic subspace
spanned by the first three vectors in the Krylov sequence: v1, Av1, and A2v1. By
choosing |β| to be large, we can give the starting vector v1 an arbitrarily large com-
ponent in the direction of e2, the eigenvector associated with the 2× 2 Jordan block.

Defining M =
[
v1, Av1, A2v1

]
and Ĥ =

⎡⎣ 0 0 1
1 0 −3
0 1 3

⎤⎦, a simple calculation

reveals AM = MĤ. The Jordan form of Ĥ is easy to calculate as follows:

R−1ĤR =

⎡⎣ 1 0 0
1 1 0
0 1 1

⎤⎦ , where R =

⎡⎣ 1 −1 1
0 1 −2
0 0 1

⎤⎦ .(2.1)

The cyclic subspace generated by the single vector v1 has captured a three-
dimensional invariant subspace, associated with the maximally defective 3×3 Jordan
block. But this subspace is not the expected span{e3, e4, e5}. Using the change of

basis defined by R in (2.1), one may calculate A(MR) = (MR)(R−1ĤR), which is⎡⎢⎢⎢⎢⎣
1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
β 1 0
1 0 0
1 1 0
1 1 1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0
β 1 0
1 0 0
1 1 0
1 1 1

⎤⎥⎥⎥⎥⎦
⎡⎣ 1 0 0

1 1 0
0 1 1

⎤⎦ .

Note that e5 alone is revealed as the eigenvector associated with the eigenvalue 1;
e2 has been washed out in spite of v1 having an arbitrarily large component in that
direction. Indeed the eigenvector e2 (and so any subspace containing it) is unreachable
from any starting vector v1 for which e∗3v1 �= 0. In this example, v1 itself emerges as
a generalized eigenvector of grade 2. Note that every vector v in C

5 with e∗3v �= 0 is
a generalized eigenvector of grade 2 associated with the eigenvalue 1.

We close this section with a computational example that both confirms the gap
stagnation lower bound for derogatory matrices given in Lemma 2.3 and illustrates
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Fig. 2.1. The Krylov subspace can never capture Xgood when this subspace is associated with
a derogatory eigenvalue; convergence is possible, however, when the associated eigenvalues are de-
fective but not derogatory, as described by Lemma 2.3.

other convergence properties explored in future sections. Consider two matrices A1

and A2, each of dimension n = 150 with eigenvalues spaced uniformly in the interval
[0, 1]. In both cases, all the eigenvalues are simple except for the single good eigenvalue
λ = 1, which has algebraic multiplicity 5. In the first case, the geometric multiplicity
also equals 5, so the matrix is diagonalizable but derogatory. In the second case, there
is only one eigenvector associated with λ = 1, so it is defective but not derogatory.
Both matrices are constructed so that ‖Pgood‖ ≈ 104. Figure 2.1 illustrates the gap
convergence for the Krylov subspace to the invariant subspace Xgood associated with
λ = 1. The starting vector v1 has 1/

√
n in each component; no restarting is used

here. Convergence cannot begin until the fifth iteration, when the Krylov subspace
dimension matches the dimension of Xgood. This initial period of stagnation is followed
by a sublinear phase of convergence leading to a second stagnation period. This is the
end of the story for the derogatory case, but for the nonderogatory case, the second
stagnation period is transient and the convergence rate eventually settles toward a
nearly linear rate. In fact, this rate improves slightly over the final iterations shown
here, yielding so-called superlinear convergence, the subject of section 4.3. These
convergence phases resemble those observed for the GMRES iteration, as described
by Nevanlinna [28].

3. Basic estimates. Since all reachable subspaces are contained in M and A|M
is nonderogatory, henceforth we assume without loss of generality that A itself is
nonderogatory so that n = dimM, and v1 is not deficient in any generalized eigen-
vector of maximal grade. To summarize the current situation, A is an n × n matrix
with N ≤ n distinct eigenvalues, {λj}Nj=1, each having geometric multiplicity 1 and

algebraic multiplicity mj , so that
∑N

j=1 mj = n. We seek L (1 ≤ L < N) of these
eigenvalues {λ1, λ2, . . . , λL} (the “good” eigenvalues) together with the correspond-

ing (maximal) invariant subspace Ugood of dimension m =
∑L

j=1 mj , which is now
the net algebraic multiplicity of good eigenvalues since A is nonderogatory.
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We begin by establishing two lemmas that are used to develop a bound for the
gap in terms of a polynomial approximation problem in the subsequent theorems.

Lemma 3.1. Given U,V ⊆ C
n, suppose û ∈ U (‖û‖ = 1) and v̂ ∈ V satisfy

δ(U,V) = max
u∈U

min
v∈V

‖u − v‖
‖u‖ = ‖û − v̂‖.

Then û − v̂ ⊥ V and û − v̂ − δ(U,V)2û ⊥ U.
Proof. The first assertion is a fundamental property of least squares approxima-

tion. To show the second, consider an arbitrary unit vector u ∈ U and take ε > 0.
Letting ΠV denote the orthogonal projection onto V, the optimality of û and v̂ implies

‖û − v̂‖2 ≥ ‖(I − ΠV)(û + εu)‖2

‖û + εu‖2
.

Expanding this inequality, noting v̂ = ΠVû, and using the first assertion gives

δ(U,V)2(1 + 2εRe(û∗u) + ε2) ≥ δ(U,V)2 + 2εRe((û − v̂)∗u) + ε2‖(I − ΠV)u‖2.

Collecting terms quadratic in ε on the left-hand side,

ε2(δ(U,V)2 − ‖(I − ΠV)u‖2) ≥ 2εRe((û − v̂ − δ(U,V)2û)∗u).

Note that the left-hand side must be nonnegative. Repeating the above argument
with u multiplied by a complex scalar of unit modulus, we can replace the right-hand
side with 2ε |(û − v̂ − δ(U,V)2û)∗u|. Thus for any unit vector û ∈ U,

ε (δ(U,V)2 − ‖(I − ΠV)u‖2) ≥ 2 |(û − v̂ − δ(U,V)2û)∗u| ≥ 0.

Taking ε → 0, we conclude that û− v̂− δ(U,V)2û is orthogonal to every u ∈ U.
As the gap between subspaces closes (δ(U,V) → 0), û − v̂ becomes “almost”

orthogonal to U in the sense that the projection of û − v̂ onto U has norm δ(U,V)2.
Lemma 3.2. Let Pm−1 denote the space of polynomials of degree m − 1 or less.

The mapping ı : Pm−1 → Ugood defined by

ı(ψ) = ψ(A)Pgoodv1(3.1)

is an isomorphism between Pm−1 and Ugood. Furthermore, there exist positive con-
stants c1 and c2 so that

c1 ‖ψ‖Pm−1 ≤ ‖ψ(A)Pgoodv1‖ ≤ c2 ‖ψ‖Pm−1 ,(3.2)

uniformly for all ψ ∈ Pm−1 for any fixed norm ‖ · ‖Pm−1 defined on the space Pm−1.
Proof. ı is clearly linear. To see that ı maps Pm−1 onto Ugood, observe that for

any given y ∈ Ugood, there exist polynomials {gj(λ)}Lj=1 with deg(gj) ≤ mj − 1 such
that

y =

L∑
j=1

gj(A)Pjv1.

The L polynomials {gj}Lj=1 provide L separate “slices” of a single polynomial that
can be recovered by (generalized) Hermite interpolation. Let ψ be a polynomial
interpolant that interpolates gj and its derivatives at λj :

ψ(k)(λj) = g
(k)
j (λj)
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for k = 0, 1, . . . ,mj − 1 and j = 1, 2, . . . , L. Theorem VIII.3.16 of [11] leads us first
to observe that ψ(A)Pj = gj(A)Pj for each j = 1, . . . , L. Then since deg(ψ) ≤∑L

j=1 mj − 1 = m− 1, we have from (3.1) that

y =
L∑

j=1

ψ(A)Pjv1 = ψ(A)Pgoodv1 = ı(ψ).

Since dim(Pm−1) = dim(Ugood), nullity(ı) = 0 and ı is bijective from Pm−1 to Ugood.
The last statement is an immediate consequence of the fact that linear bijections are
bounded linear transformations with bounded inverses.

Theorem 3.3. Suppose that A and v1 satisfy the assumptions of this section,
and that none of the filter shifts {µjk} coincides with any of the good eigenvalues
{λj}Lj=1. For all indices � ≥ m, the gap between the good invariant subspace, Ugood,

and the Krylov subspace of order �, K�(A,v
(ν)
1 ), generated from the ν-fold restarted

vector, v
(ν)
1 , satisfies

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 max

ψ∈Pm−1

min
φ∈P�−m

‖φ(A)ψ(A)Ψνp(A)Pbadv1‖
‖φ(A)ψ(A)Ψνp(A)Pgoodv1‖

,

where C0 ≡ 1 if Ugood ⊥ Ubad and C0 ≡
√

2 otherwise.
Proof. First, suppose Ugood ⊥ Ubad. This implies that Pgood and Pbad are or-

thogonal projections, Ugood is an invariant subspace for both Ψνp(A) and [Ψνp(A)]∗,

and, as we will see, that δ(Ugood,K�(A,v
(ν)
1 )) < 1. Indeed, suppose instead that

δ(Ugood,K�(A,v
(ν)
1 )) = 1. Then there is a vector û ∈ Ugood with ‖û‖ = 1 such that

û ⊥ K�(A,v
(ν)
1 ). Define ŷ ≡ [Ψνp(A)]∗û ∈ Ugood, and note that by Lemma 3.2,

there exists a polynomial ψ̂ ∈ Pm−1 such that ŷ = ψ̂(A)Pgoodv1. Now, for each
j = 1, 2, . . . , �, we have

0 = 〈û, Aj−1v
(ν)
1 〉 = 〈û, Aj−1Ψνp(A)v1〉

= 〈ŷ, Aj−1Pgoodv1〉
= 〈ψ̂(A)Pgoodv1, Aj−1Pgoodv1〉.

Since � ≥ m, this implies first that ‖ψ̂(A)Pgoodv1‖ = 0 and then û = 0. (Recall that
[Ψνp(A)]∗ is bijective on Ugood since Ψνp has no roots in common with good eigenval-

ues.) But û was given to be a unit vector, so it must be that δ(Ugood,K�(A,v
(ν)
1 )) < 1.

There are optimal vectors v̂ ∈ K�(A,v
(ν)
1 ) and x̂ ∈ Ugood with ‖x̂‖ = 1 so that

δ(Ugood,K�(A,v
(ν)
1 )) = max

x∈Ugood

min
v∈K�(A,v

(ν)
1 )

‖v − x‖
‖x‖ = ‖v̂ − x̂‖.(3.3)

Since δ(Ugood,K�(A,v
(ν)
1 )) < 1, it must be that v̂ �= 0. Furthermore, optimality for

v̂ means v̂ − x̂ ⊥ K�(A,v
(ν)
1 ) (viz., Lemma 3.1) and, in particular, v̂∗(v̂ − x̂) = 0.

So, v̂ �= 0 implies v̂ �∈ Ubad. There is a polynomial π�−1 ∈ P�−1 such that

v̂ = π�−1(A)v
(ν)
1 = π�−1(A)Ψνp(A)v1.

Define Q = Ugood ∩ Ker(π�−1(A)) and let q̂ be the minimum (monic) annihilating
polynomial for Q.1 Evidently, π�−1 must contain q̂ as a factor.

1That is, q̂ is the minimum degree monic polynomial such that q̂(A)r = 0 for all r ∈ Q.
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Since v̂ �∈ Ubad, π�−1 cannot be an annihilating polynomial for Ugood, so Q �=
Ugood and deg(q̂) ≤ m − 1. One may factor π�−1 as the product of a polynomial, φ,
of degree �−m and a polynomial, q, of degree m− 1 containing q̂ as a factor,

π�−1(λ) = φ(λ)q(λ).

Observing that Ugood is invariant for both φ(A) and φ(A)∗, we may decompose x̂
as x̂ = φ(A)ŷ + n for some ŷ ∈ Ugood and some n ∈ Ker(φ(A)∗) ∩ Ugood. Notice
that v̂∗φ(A)ŷ = v̂∗x̂ = v̂∗v̂ > 0, so φ(A)ŷ �= 0. However, we’ll see that it must
happen that n = 0. Indeed, Lemma 3.1 shows that if z ∈ Ugood is orthogonal to x̂,
x̂∗z = 0, then v̂∗z = 0 as well. In particular, for z = ‖n‖2φ(A)ŷ − ‖φ(A)ŷ‖2n we
have x̂∗z = 0. Since Kerφ(A)∗ = Ranφ(A)⊥ implies v̂∗n = 0, we have

0 = v̂∗z = ‖n‖2v̂∗φ(A)ŷ.

We have already seen that v̂∗φ(A)ŷ > 0, and so n = 0. Thus we can safely exclude
from the maximization in (3.3) all x ∈ Ugood except for those vectors having the
special form x = φ(A)y for y ∈ Ugood and φ as defined above.

We can now begin our process of bounding the gap. Note that

δ(Ugood,K�(A,v
(ν)
1 )) = max

x∈Ugood

min
v∈K�(A,v

(ν)
1 )

‖v − x‖
‖x‖

= max
x∈Ugood

min
φ∈P�−m

min
q∈Pm−1

‖Ψνp(A)φ(A)q(A)v1 − x‖
‖x‖

= max
y∈Ugood

min
φ∈P�−m

min
q∈Pm−1

‖Ψνp(A)φ(A)[q(A)v1 − y]‖
‖Ψνp(A)φ(A)y‖ ,(3.4)

where we are able to justify the substitution x = Ψνp(A)φ(A)y since Ψνp(A) is an
invertible map of Ugood to itself.

Now by Lemma 3.2, y ∈ Ugood can be represented as y = ψ(A)Pgoodv1 for some
ψ ∈ Pm−1. Since I = Pbad + Pgood, one finds

ψ(A)v1 − y = ψ(A)Pbadv1.

Continuing with (3.4), assign q ≡ ψ ∈ Pm−1. Then

δ(Ugood,K�(A,v
(ν)
1 )) ≤ max

y∈Ugood

(y=ψ(A)Pgoodv1)

min
φ∈P�−m

‖Ψνp(A)φ(A)[ψ(A)v1 − y]‖
‖Ψνp(A)φ(A)y‖

= max
ψ∈Pm−1

min
φ∈P�−m

‖Ψνp(A)φ(A)ψ(A)Pbadv1‖
‖Ψνp(A)φ(A)ψ(A)Pgoodv1‖

,

as required, concluding the proof when Ugood ⊥ Ubad.
In case Ugood and Ubad are not orthogonal subspaces, we introduce a new inner

product on C
n with respect to which they are orthogonal. For any u,v ∈ C

n, define

〈u,v〉∗ ≡ 〈Pgoodu,Pgoodv〉 + 〈Pbadu,Pbadv〉,

and define the gap with respect to the new norm ‖ · ‖∗ =
√
〈·, ·〉∗ to be

δ∗(W,V) = sup inf
x∈W y∈V

‖y − x‖∗
‖x‖∗

.
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Notice that for any vector w ∈ C
n,

‖w‖2 = ‖Pgoodw + Pbadw‖2 ≤ 2
(
‖Pgoodw‖2 + ‖Pbadw‖2

)
= 2‖w‖2

∗,

‖Pgoodw‖∗ = ‖Pgoodw‖, and ‖Pbadw‖∗ = ‖Pbadw‖.

In particular, for any x ∈ Ugood and y ∈ C
n these relationships directly imply

‖y − x‖
‖x‖ ≤

√
2
‖y − x‖∗
‖x‖∗

,

and so δ(Ugood,K�(A,v
(ν)
1 )) ≤

√
2 δ∗(Ugood,K�(A,v

(ν)
1 )). Since Ugood and Ubad

are orthogonal in this new inner product, we can apply the previous argument to
conclude2

δ(Ugood,K�(A,v
(ν)
1 )) ≤

√
2 max

ψ∈Pm−1

min
φ∈P�−m

‖φ(A)ψ(A)Ψνp(A)Pbadv1‖∗
‖φ(A)ψ(A)Ψνp(A)Pgoodv1‖∗

=
√

2 max
ψ∈Pm−1

min
φ∈P�−m

‖φ(A)ψ(A)Ψνp(A)Pbadv1‖
‖φ(A)ψ(A)Ψνp(A)Pgoodv1‖

.

If N is a square matrix with an invariant subspace V, define

‖N‖V ≡ max
v∈V

‖Nv‖
‖v‖ = ‖NΠV‖,

where ΠV here denotes the orthogonal projection onto V.
Theorem 3.4. Suppose A, v1, and the shifts {µjk} satisfy the conditions of

Theorem 3.3. Then for � ≥ m,

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 min

φ∈P�−m

‖[φ(A)Ψνp(A)]−1‖Ugood
‖φ(A)Ψνp(A)‖Ubad

,

where C0 is as defined in Theorem 3.3 and

C1 ≡ max
ψ∈Pm−1

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

(3.5)

is a constant independent of �, ν, p, or the filter shifts {µjk}.
Proof. Let Πgood and Πbad denote the orthogonal projections onto Ugood and

Ubad, respectively. Then

‖Ψνp(A)φ(A)Pbadψ(A)v1‖ = ‖Ψνp(A)φ(A)ΠbadPbadψ(A)v1‖
≤ ‖Ψνp(A)φ(A)Πbad‖ ‖Pbadψ(A)v1‖,

and, assuming for the moment that φ(A) is invertible,

‖Pgoodψ(A)v1‖ = ‖[Ψνp(A)φ(A)]−1ΠgoodPgoodΨνp(A)φ(A)ψ(A)v1‖
≤ ‖[Ψνp(A)φ(A)]−1Πgood‖ ‖PgoodΨνp(A)φ(A)ψ(A)v1‖.

2A more precise value for C0 can be found as

1 ≤ C0 =

√
2 ‖I − 2Pgood‖2

1 + ‖I − 2Pgood‖2
≤

√
2;

however, the marginal improvement in the final bound would not appear to merit the substantial
complexity added.
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Hence,

‖Ψνp(A)φ(A)Pbadψ(A)v1‖
‖Ψνp(A)φ(A)Pgoodψ(A)v1‖

≤ ‖[Ψνp(A)φ(A)]−1‖Ugood
‖Ψνp(A)φ(A)‖Ubad

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

.

Minimizing with respect to φ and maximizing with respect to ψ yields the con-
clusion provided the expression for C1 is finite. This is assured since, as an immediate
consequence of (3.2), ‖ψ(A)Pgoodv1‖ = 0 can occur only when ψ = 0.

It is instructive to consider the situation where we seek only a single good eigen-
value, λ1, which is simple. In this case m = dimUgood = 1; the conclusion of Theo-
rem 3.3 may be stated as

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 min

φ∈P�−1

‖φ(A)Ψνp(A)w‖
|φ(λ1)Ψνp(λ1)|

,

where w = Pbadv1/‖Pbadv1‖ and C1 = ‖Pbadv1‖/‖Pgoodv1‖. Elementary geometric
considerations yield the following alternate expression for C1:

C1 =

√(
1

‖Pgood‖
sin Θ(Ugood,v1)

cos Θ(U⊥
bad,v1)

)2
+

(
1 − 1

‖Pgood‖
cos Θ(Ugood,v1)

cos Θ(U⊥
bad,v1)

)2
,

where Θ(Ugood,v1) and Θ(U⊥
bad,v1) are the smallest angles between v1 and the one-

dimensional subspaces Ugood and U⊥
bad, respectively. This special case is stated as

Proposition 2.1 of [18];3 see also Saad’s single eigenvalue convergence theory [32].
Our next step is to reduce the conclusion of Theorem 3.4 to an approximation

problem in the complex plane. Let U be an invariant subspace of A associated with
a compact subset Ω ⊂ C (that is, Ω contains only those eigenvalues of A associated
with U and no others). Define κ(Ω) as the smallest constant for which the inequality

‖f(A)‖U ≤ κ(Ω) max
z∈Ω

|f(z)|(3.6)

holds uniformly over all f ∈ H(Ω), where H(Ω) denotes the functions analytic on Ω.4

Evidently, the value of the constant κ(Ω) depends on the particular choice of Ω (a
set containing, in any case, those eigenvalues of A associated with U). The following

properties of κ(Ω) are shared by the generalized Kreiss constant K̃(Ω) of Toh and
Trefethen [41] (defined for U = C

n). κ(Ω) is monotone decreasing with respect to set
inclusion on Ω. Indeed, if Ω1 ⊆ Ω2, then for each function f analytic on Ω2,

‖f(A)‖U

max{|f(z)| : z ∈ Ω1}
≥ ‖f(A)‖U

max{|f(z)| : z ∈ Ω2}
.

Thus, Ω1 ⊆ Ω2 implies κ(Ω1) ≥ κ(Ω2).
Since the constant functions are always among the available analytic functions on

Ω, κ(Ω) ≥ 1. If A is normal, κ(Ω) = 1. Indeed, if A is normal and Σ denotes the set
of eigenvalues of A associated with the invariant subspace U, then

1 ≤ κ(Ω) = sup
f∈H(Ω)

‖f(A)‖U

max{|f(z)| : z ∈ Ω} = sup
f∈H(Ω)

max{|f(λ)| : λ ∈ Σ}
max{|f(z)| : z ∈ Ω} ≤ 1.

3[18] contains an error amounting to the tacit assumption that Pgood is an orthogonal projection,
which is true only if Ugood ⊥ Ubad. Thus the results coincide only in this special case (note C0 = 1).

4For given k ≥ 1, the sets Ω that (i) contain all eigenvalues of A and (ii) satisfy κ(Ω) ≤ k are
called k-spectral sets and figure prominently in dilation theory of operators [29].
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If any eigenvalue associated with the invariant subspace U is defective, then some
choices of Ω will not yield a finite value for κ(Ω). For example, let A = [ 00

1
0 ] and

take U = C
2 as an invariant subspace associated with the defective eigenvalue λ = 0.

If Ω consists of the single point {0} and f(z) = z, then evidently ‖f(A)‖U = 1 but
maxz∈Ω |f(z)| = 0. So, no finite value of κ(Ω) is possible (see [31, p. 440]). More
generally, if Ω is the spectrum of a defective matrix A, then the monic polynomial
consisting of a single linear factor for each distinct eigenvalue of A is zero on Ω but
cannot annihilate A, as it has lower degree than the minimum polynomial of A.

We now use κ to adapt Theorem 3.4 into a more approachable approximation
problem. In particular, if Ωgood is a compact subset of C containing all the good
eigenvalues of A but none of the bad, then

‖[φ(A)Ψνp(A)]−1‖Ugood
≤ κ(Ωgood) max{|[φ(z)Ψνp(z)]

−1| : z ∈ Ωgood}

=
κ(Ωgood)

min{|φ(z)Ψνp(z)| : z ∈ Ωgood}
.

Applying a similar bound to ‖φ(A)Ψνp(A)‖Ubad
, we obtain the following result, the

centerpiece of our development.
Theorem 3.5. Suppose A and v1 satisfy the conditions of Theorem 3.3. Let

Ωgood and Ωbad be disjoint compact subsets of C that contain, respectively, the good
and bad eigenvalues of A, and suppose that none of the filter shifts {µjk} lies in
Ωgood. Then, for � ≥ m,

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 C2 min

φ∈P�−m

max{|Ψνp(z)φ(z)| : z ∈ Ωbad}
min{|Ψνp(z)φ(z)| : z ∈ Ωgood}

,

where C0 and C1 are the constants introduced in Theorems 3.3 and 3.4, respectively,
and C2 ≡ κ(Ωgood)κ(Ωbad).

Evidently, Theorem 3.5 can be implemented with a variety of choices for Ωgood

and Ωbad, which affects both the polynomial approximation problem and the constant
C2 (considered in section 5.3). The polynomial approximation problem, classified as
“Zolotarev-type,” is discussed in detail in the next section. Similar problems arise in
calculating optimal ADI parameters [26].

4. The polynomial approximation problem. Theorem 3.5 suggests the gap
between a Krylov subspace and an invariant subspace will converge to zero at a rate
determined by how small polynomials of increasing degree can become on Ωbad while
maintaining a minimal uniform magnitude on Ωgood. How can this manifest as a
linear convergence rate? Consider the ansatz

min
φ∈P�∗

max{ |φ(w)| : w ∈ Ωbad}
min{ |φ(z)| : z ∈ Ωgood}

= r�
∗
,

for some 0 < r ≤ 1. Pick a fixed φ ∈ P�∗ , say, with exact degree �∗. Then

log

(
max{ |φ(w)| : w ∈ Ωbad}
min{ |φ(z)| : z ∈ Ωgood}

)
≥ �∗ log(r).(4.1)

Introducing Uφ(z,Ωbad) ≡ 1
�∗ log

(
|φ(z)|

max{ |φ(w)|:w∈Ωbad}

)
, (4.1) is equivalent to

min
z∈Ωgood

Uφ(z,Ωbad) ≤ − log(r).
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Evidently, the size of r will be related to how large Uφ(z,Ωbad) can be made uniformly
throughout Ωgood; larger Uφ values allow smaller r (faster rates). Uφ(z,Ωbad) has the
following properties:

• Uφ(z,Ωbad) is harmonic at z where φ(z) �= 0;
• Uφ(z,Ωbad) = log |z| + c + o(1) for a finite constant c as |z| → ∞;
• Uφ(z,Ωbad) ≤ 0 for all z ∈ ∂Ωbad.

Potential theory provides a natural setting for studying such approximation prob-
lems. It is central to the analysis of iterative methods for solving linear systems (see,
e.g., [26] for ADI methods and [10, 28] for Krylov subspace methods), and has been
used by Calvetti, Reichel, and Sorensen to analyze the Hermitian Lanczos algorithm
with restarts [6]. We apply similar techniques here to study Uφ(z,Ωbad).

4.1. Potential theory background. Let D ⊂ C be a compact set whose com-
plement, C \ D, is a connected Dirichlet region.5 The Green’s function of C \ D

with pole at infinity is defined as that function, g[z,D], that satisfies the following
properties:

(i) g is harmonic in C \ D;
(ii) limz→∞ g[z,D] = log |z| + finite constant;
(iii) limz→ẑ g[z,D] = 0 for all ẑ ∈ ∂D;
(iv) g[z,D] > 0 for all z ∈ C \ D.

Note that property (iv) can be deduced from (i), (ii), the fact that (ii) implies that
g > 0 for all sufficiently large |z|, and the maximum principle for harmonic functions.
The maximum principle also shows that g[z,D] is the only function satisfying (i)–(iv).

Example 4.1. If C \ D is simply connected, one is assured (from the Riemann
mapping theorem; see, e.g., [8, sect. VII.4]) of the existence of a function F (z) that
maps C\D conformally onto the exterior of the closed unit disk C\B1 = {z : |z| > 1}
such that F (∞) = ∞. Such an F must behave asymptotically as αz + O(1) as
|z| → ∞ for some constant α, since it must remain one-to-one in any neighborhood
of ∞. Since log |z| is harmonic for any z �= 0, one may check that u(z) = log |F (z)|
is also harmonic in z wherever F (z) �= 0, u(∞) = ∞, and u(z) → 0 as |z| → 1
from C \ D. Thus, log |F (z)| is the Green’s function with pole at infinity for C \ D.
Evidently, lim|z|→∞ u(z) − log |z| → log |α|. Notice that log |z| itself is the Green’s
function with pole at infinity for C \ B1.

Even for more complicated compact sets D, the condition that g[z,D] is harmonic
everywhere outside D with a pole at ∞ restricts the rate of growth of g[z,D] near
∞. Loosely speaking, as |z| becomes very large, the compact set D becomes less
and less distinguishable from a disk centered at 0 (say, with radius γ), and so g[z,D]
becomes less and less distinguishable from g[z,Bγ ] = log |z/γ| = log |z| − log γ, which
is the Green’s function with pole at infinity for C \ Bγ = {z : |z| > γ}. Indeed, from
property (ii), g[z,D] has growth at infinity satisfying

lim
|z|→∞

g[z,D] − log |z| = − log γ(4.2)

for some constant γ > 0 known as the logarithmic capacity of the set D. This γ can
be thought of as the effective radius of D in the sense we’ve just described.

Example 4.2. Suppose Φ�(z) is a monic polynomial of degree � and let

Dε(Φ�) = {z ∈ C : |Φ�(z)| ≤ ε}

5See [8, sect. X.4]. For our purposes here, this can be taken to mean a set having a piecewise
smooth boundary with no isolated points; the effect of isolated points is addressed in section 4.3.
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be a family of regions whose boundaries are the ε-lemniscates of Φ�(z). Dε(Φ�) is
compact for each ε > 0, though it need not be a connected region. With an easy
calculation one may verify that Dε(Φ�) has the Green’s function (cf. [36, p. 164])

g[z,Dε(Φ�)] =
1

�
log

(
|Φ�(z)|

ε

)
.

Equipped with the Green’s function g[z,D], we return to the analysis of the
function Uφ(z,D) describing the error in our approximation problem. The following
result is a simplified version of the Bernstein–Walsh lemma (see [36, sect. III.2]).

Proposition 4.3. Let D be a compact set with piecewise smooth boundary ∂D.
Suppose u is harmonic outside D and that u(z) ≤ 0 for z ∈ ∂D. If u(z) = log |z| +
c + o(1) for some constant c as |z| → ∞, then u(z) ≤ g[z,D]. In particular, if φ(z)
is any polynomial of degree �, then for each z ∈ C \ D

Uφ(z,D) =
1

�
log

(
|φ(z)|

max{|φ(w)| : w ∈ D}

)
≤ g[z,D].(4.3)

For certain special choices of D = Ωbad, the polynomial approximation problem
of Theorem 3.5 can be solved exactly.

Theorem 4.4. Suppose Φ�∗(z) is a monic polynomial of degree �∗. Let Ωbad =
Dε(Φ�∗) be an associated ε-lemniscatic set as defined in Example 4.2 and suppose
Ωgood is a compact subset of C such that Ωgood ∩ Dε(Φ�∗) = ∅. Then

min
φ∈P�∗

max{ |φ(w)| : w ∈ Ωbad}
min{ |φ(z)| : z ∈ Ωgood}

=
ε

min{ |Φ�∗(z)| : z ∈ Ωgood}
.

Proof. Using the Green’s function for Dε(Φ�∗) described in Example 4.2, we can
rearrange (4.3) to show that for any φ ∈ P�∗ ,

|φ(z)|
max{|φ(w)| : w ∈ Dε(Φ�∗)}

≤ |Φ�∗(z)|
ε

holds for all z ∈ Ωgood. Equality is attained for every z ∈ C whenever φ = Φ�∗ .
Minimizing over z ∈ Ωgood and then maximizing over φ ∈ P�∗ yields

max
φ∈P�∗

min{|φ(z)| : z ∈ Ωgood}
max{|φ(w)| : w ∈ Dε(Φ�∗)}

≤ min{|Φ�∗(z)| : z ∈ Ωgood}
ε

.(4.4)

In fact, equality must hold in (4.4) since φ = Φ�∗ is included in the class of func-
tions over which the maximization occurs. The conclusion then follows by taking the
reciprocal of both sides.

More general choices for D = Ωbad will not typically yield exactly solvable polyno-
mial approximation problems, at least for fixed (finite) polynomial degree. However,
the following asymptotic result holds as the polynomial degree increases.

Theorem 4.5. Let Ωbad and Ωgood be two disjoint compact sets in the complex
plane such that C \ Ωbad is a Dirichlet region. Then

lim
�∗→∞

min
φ∈P�∗

(
max{|φ(w)| : w ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

)1/�∗
= e−min{g[z,Ωbad] : z∈Ωgood},(4.5)

where g[z,Ωbad] is the Green’s function of C \ Ωbad with pole at infinity.
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Proof. The theorem is proved in [26, p. 236], where the left-hand side of (4.5)
is referred to as the (�∗, 0) Zolotarev number. We give here a brief indication of the
proof to support later discussion. Inequality (4.3) can be manipulated to yield(

|φ�∗(z)|
max{|φ�∗(w)| : w ∈ Ωbad}

)1/�∗
≤ eg[z,Ωbad],

which in turn implies(
max{|φ�∗(w)| : w ∈ Ωbad}
min{|φ�∗(z)| : z ∈ Ωgood}

)1/�∗
≥ e−min{g[z,Ωbad] : z∈Ωgood}.

Furthermore, one may construct polynomials Lk that have as their zeros points
distributed on the boundary ∂Ωbad, the Leja points {µ1, µ2, . . . , µk}, defined recur-
sively so that

µk+1 = arg max

{ k∏
j=1

|z − µj | : z ∈ Ωbad

}
;

see [36, sect. V.1]. This sequence of Leja polynomials satisfies asymptotic optimality,

lim
k→∞

(
|Lk(z)|

max{|Lk(w)| : w ∈ Ωbad}

)1/k
= eg[z,Ωbad](4.6)

for each z ∈ C\Ωbad. Convergence is uniform on compact subsets of C\Ωbad. Thus we
can reverse the order of the limit with respect to polynomial degree and minimization
with respect to z ∈ Ωgood, then take reciprocals to find

lim
k→∞

(
max{|Lk(w)| : w ∈ Ωbad}
min{|Lk(z)| : z ∈ Ωgood}

)1/k
= e−min{g[z,Ωbad] : z∈Ωgood}.(4.7)

Since (
max{|L�∗(w)| : w ∈ Ωbad}
min{|L�∗(z)| : z ∈ Ωgood}

)1/�∗
≥ min

φ∈P�∗

(
max{|φ(w)| : w ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

)1/�∗
≥ e−min{g[z,Ωbad] : z∈Ωgood},

equality must hold throughout and thus (4.5) holds.
In the context of Example 4.1, where F (z) was a conformal map taking the

exterior of Ωbad to the exterior of the closed unit disk with F (∞) = ∞, Theorem 4.5
reduces to (cf. [10, Thm. 2])

lim
�∗→∞

min
φ∈P�∗

(
max{|φ(w)| : w ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

)1/�∗
= max

z∈Ωgood

1

|F (z)| .

4.2. Effective restart strategies. The usual goal in constructing a restart
strategy is to limit the size of the Krylov subspace (restricting the maximum degree of
the polynomial φ) without degrading the asymptotic convergence rate. Demonstrating
equality in (4.5) pivoted on the construction of an optimal family of polynomials—in
this case, Leja polynomials. There are other possibilities, however. Fekete polyno-
mials are the usual choice for the construction in Theorem 4.5; see [36, sect. III.1].
Chebyshev polynomials and Faber polynomials offer familiar alternatives. (For Hermi-
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tian matrices, a practical Leja shift strategy has been developed by Baglama, Calvetti,
and Reichel [3] and Calvetti, Reichel, and Sorenson [6]. Heuveline and Sadkane ad-
vocate numerical conformal mapping to determine Faber polynomials for restarting
non-Hermitian iterations [18].) Once some optimal family of polynomials is known
that solves (4.5), effective restart strategies become evident.

Theorem 4.6. Let Ωgood and Ωbad be two disjoint compact sets in the complex
plane containing, respectively, the good and bad eigenvalues of A, and such that C \
Ωbad is a Dirichlet region. Suppose that Ψνp(z) is the aggregate restart polynomial
representing ν restarts each of order p.

(a) If polynomial restarts are performed using roots of optimal polynomials for
Ωbad (i.e., Ψνp(z) are optimal polynomials of degree νp), then

lim
ν→∞

min
φ∈P�∗

(
max{|Ψνp(w)φ(w)| : w ∈Ωbad}
min{|Ψνp(z)φ(z)| : z ∈Ωgood}

) 1
νp+�∗

= e−min{g[z,Ωbad]:z∈Ωgood},(4.8)

where g[z,Ωbad] is the Green’s function of Ωbad with pole at infinity.
(b) If the boundary of Ωbad is a lemniscate of ΨνpΦ�∗ ,

Ωbad = Dε(ΨνpΦ�∗) = {z ∈ C : |Ψνp(z)Φ�∗(z)| ≤ ε} ,

for some degree-�∗ monic polynomial Φ�∗ and some ε > 0, then

min
φ∈P�∗

max{|Ψνp(w)φ(w)| : w ∈ Ωbad}
min{|Ψνp(z)φ(z)| : z ∈ Ωgood}

=
ε

min{|Ψνp(z)Φ�∗(z)| : z ∈ Ωgood}
.

Proof. Part (b) follows immediately from Theorem 4.4. Part (a) can be seen by
observing that since Ψνp(z) is an asymptotically optimal family for Ωbad,

max{|Ψνp(w)| : w ∈ Ωbad}
min{|Ψνp(z)| : z ∈ Ωgood}

≥ min
φ∈P�∗

(
max{|Ψνp(w)φ(w)| : w ∈ Ωbad}
min{|Ψνp(z)φ(z)| : z ∈ Ωgood}

)
≥
(
e−min{g[z,Ωbad] : z∈Ωgood}

)νp+�∗

.

Now fixing p and �∗, the conclusion follows from (4.7) by following the subsequence
generated by ν = 1, 2, . . . .

Recall that the desired effect of the restart polynomial is to retain the rapid
convergence rate of the full (unrestarted) Krylov subspace without requiring the di-
mension �∗ to grow without bound. We have seen here that restarting with optimal
polynomials for Ωbad recovers the expected linear convergence rate for Ωbad (presum-
ing one can identify this set, not a trivial matter in practice). Still, the unrestarted
process may take advantage of the discrete nature of the spectrum, accelerating con-
vergence beyond the expected linear rate. Designing a restart strategy that yields
similar behavior is more elaborate.

4.3. Superlinear effects from assimilation of bad eigenvalues. In a variety
of situations, the gap appears to converge superlinearly. True superlinear convergence
is an asymptotic phenomenon that has a nontrivial meaning only for nonterminating
iterations. Thus one must be cautious about describing superlinear effects relating
to (unrestarted) Krylov subspaces, since Ugood is eventually completely captured by
the Krylov subspace as discussed in section 2. Here our point of view follows that of
[46, 48], showing the estimated gap may be bounded by a family of linearly converging
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processes exhibiting increasingly rapid linear rates. The next result mimics the Ritz
value bounds for Hermitian matrices developed by van der Sluis and van der Vorst
[47, sect. 6.6]. We assume here that Ωbad consists of the union of s discrete points,
potentially with some additional Dirichlet region. That is, some bad eigenvalues
(typically those closest to the good eigenvalues, or distant outliers) are treated as
discrete points, while any leftovers are collected in the Dirichlet region.

Theorem 4.7. Let Ωgood and Ωbad be disjoint compact subsets of C and suppose
Ωbad contains s isolated points, z1, z2, . . . , zs. Define a sequence of s+1 nested subsets
as Ωk = Ωk+1∪{zk} for k = 1, . . . , s with Ω1 ≡ Ωbad, so that each set Ωk ⊃ Ωk+1 �= ∅
differs from adjacent sets in the sequence by single points. Define also the associated
diameters

ek ≡ max {|w − zk| : w ∈ Ωk} and dk ≡ min {|z − zk| : z ∈ Ωgood} .

Then for r = 1, . . . , s and each �∗ > r,

min
φ∈P�∗

max {|φ(w)| : w ∈ Ωbad}
min {|φ(z)| : z ∈ Ωgood}

≤
( r∏

j=1

ej
dj

)
min

φ∈P�∗−r

max {|φ(w)| : w ∈ Ωr+1}
min {|φ(z)| : z ∈ Ωgood}

.

Proof. Fix an integer k ≥ 1 and observe that

min
φ∈P�∗

maxw∈Ωk
|φ(w)|

minz∈Ωgood
|φ(z)| ≤ min

φ∈P�∗−1

maxw∈Ωk
|(w − zk)φ(w)|

minz∈Ωgood
|(z − zk)φ(z)|

= min
φ∈P�∗−1

maxw∈Ωk+1
|(w − zk)φ(w)|

minz∈Ωgood
|(z − zk)φ(z)|

≤ ek
dk

min
φ∈P�∗−1

maxw∈Ωk+1
|φ(w)|

minz∈Ωgood
|φ(z)| .

The conclusion follows by applying the argument repeatedly for k = 1, 2, . . . , r.
Asymptotically, the discrete points in Ωbad have no effect on the convergence rate.
Corollary 4.8. In the notation of Theorem 4.7, suppose Ωs+1 is a Dirichlet

region. Then

lim
�∗→∞

min
φ∈P�∗

(
max {|φ(w)| : w ∈ Ωbad}
min {|φ(z)| : z ∈ Ωgood}

)1/�∗
≤ e−min{g[z,Ωs+1] : z∈Ωgood},

where g[z,Ωs+1] is the Green’s function with pole at infinity associated with C\Ωs+1.
Proof. The result follows by applying the asymptotic approach of Theorem 4.5

to the result of Theorem 4.7 for r = s.
To demonstrate such superlinear effects, we consider a parameterized diagonal ma-

trix Aα having 100 bad eigenvalues spaced uniformly in the unit interval [−1−α,−α]
and 4 good eigenvalues uniformly spaced in [0, 1]. Figure 4.1 illustrates convergence
of the gap δ(Ugood,K�(Aα,v1)) for α = 0.1, 0.01, 0.05, and 0.001, always with the
starting vector v1 having 1/

√
n in each component (n = 104). Above each conver-

gence curve are bounds from Theorem 3.5 and Theorem 4.7. (The calculation of C1

is addressed in section 5.1.) For the superlinear bounds, take Ωbad to be the set of
bad eigenvalues and set Ωr to be Ωbad less the r − 1 rightmost bad eigenvalues. We
approximate the optimal polynomial in Theorem 4.7 by Chebyshev polynomials for
Ωconv

r+1 (see [35, sect. IV.4.1] for details). Notice the envelope produced by the ag-
gregated linear rates creates a superlinear convergence effect to an extent determined
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Fig. 4.1. Aggregate linear rates produce a superlinear effect. Observed gap convergence (broken
line) and aggregate bounds (solid lines) computed using Theorems 3.5 and 4.7 for Ωr with r =
1, . . . , 50.

by the “granularity” of bad eigenvalues as viewed from the nearest good eigenvalue.
Greater granularity (smaller α) causes poor initial rates due to nearby bad eigenval-
ues, which rapidly dissipate as these eigenvalues are assimilated, yielding to improved
rates determined by more remote bad eigenvalues. The same phenomenon is observed
in section 6.4 for a Markov chain eigenvalue problem. But assimilation of nearby bad
eigenvalues is not the only mechanism for superlinear convergence. In section 5.3, we
describe how nonnormality can also give rise to such behavior, illustrated experimen-
tally in section 6.2.

5. Analysis of constants. This section contains a more detailed discussion of
the constants C1 and C2 that arise in the convergence bounds given in Theorems 3.4
and 3.5. The magnitude of these constants controls the predicted start of the linear
phase of convergence: larger constants suggest delayed linear convergence. Thus we
seek an appreciation of those matrix and starting vector properties that lead to more
or less favorable convergence bounds.

5.1. Bounding C1. Notice that

C1 = max
ψ∈Pm−1

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

= max
v∈Km(A,v1)

‖Pbadv‖
‖Pgoodv‖

= max
x∈Cm

‖PbadVmx‖
‖PgoodVmx‖ ,

where the columns of Vm form a basis for Km(A,v1). This last expression for C1

is simply the largest generalized singular value of the pair of matrices PbadVm and
PgoodVm (see, e.g., [14, sect. 8.7.3]). This is how we determine C1 for our examples.

The dependence of C1 on the starting vector v1 is critical. If v1 is biased against
Ugood, then C1 will be large and our bounds predict a delay in convergence. Likewise,
a good starting vector accelerates convergence as expected.6 We investigate this

6Though our bounds explicitly incorporate restart effects into the polynomial approximation
problem, an alternative approach could instead handle restarts via the constant C1, which we expect
to shrink as restarts enrich the starting vector in Ugood.
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behavior with an illustrative example, but first give bounds for C1 that relate its
magnitude to the orientation of Km(A,v1) relative to Ugood and Ubad.

Proposition 5.1. Under the conditions of Theorem 3.4,

1

‖Pgood‖
δ(Km(A,v1),Ugood)

δ(Km(A,v1),Ubad)
≤ C1 ≤ ‖Pgood‖ δ(Km(A,v1),Ugood)

1 − ‖Pgood‖ δ(Km(A,v1),Ugood)
,

where the second inequality holds provided ‖Pgood‖ δ(Km(A,v1),Ugood) < 1.
Proof. If Πgood denotes the orthogonal projection onto Ugood, then I − Πgood =

(I − Πgood)(I − Pgood), and so

‖(I − Πgood)ψ(A)v1‖ ≤ ‖(I − Pgood)ψ(A)v1‖ = ‖ψ(A)Pbadv1‖.

Thus,

δ(Km(A,v1),Ugood) = max
ψ∈Pm−1

min
u∈Ugood

‖u − ψ(A)v1‖
‖ψ(A)v1‖

= max
ψ∈Pm−1

‖(I − Πgood)ψ(A)v1‖
‖ψ(A)v1‖

= max
ψ∈Pm−1

‖ψ(A)Pgoodv1‖
‖ψ(A)v1‖

‖(I − Πgood)(I − Pgood)ψ(A)v1‖
‖ψ(A)Pgoodv1‖

≤ max
ψ∈Pm−1

‖(I − Pbad)(I − Πbad)ψ(A)v1‖
‖ψ(A)v1‖

‖Pbadψ(A)v1‖
‖ψ(A)Pgoodv1‖

≤ ‖I − Pbad‖ max
ψ∈Pm−1

‖(I − Πbad)ψ(A)v1‖
‖ψ(A)v1‖

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

≤ ‖Pgood‖ δ(Km(A,v1),Ubad)C1.

This gives the first inequality. For the second, note that for any ψ ∈ Pm−1,

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

=
‖(I − Pgood)ψ(A)v1‖

‖ψ(A)v1‖
‖ψ(A)v1‖

‖ψ(A)Pgoodv1‖

=
‖(I − Pgood)(I − Πgood)ψ(A)v1‖

‖ψ(A)v1‖
‖ψ(A)(Pgood + Pbad)v1‖

‖ψ(A)Pgoodv1‖

≤ ‖I − Pgood‖
‖(I − Πgood)ψ(A)v1‖

‖ψ(A)v1‖

(
1 +

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

)
.

(A more frugal inequality leads to a sharper but rather intricate upper bound for C1.)
Maximizing over ψ ∈ Pm−1 and noting that ‖I − Pgood‖ = ‖Pgood‖ [22] yields

C1 ≤ ‖Pgood‖ δ(Km(A,v1),Ugood)(1 + C1).

When ‖Pgood‖ δ(Km(A,v1),Ugood) < 1, this expression can be rearranged to give the
desired upper bound.

The bounds given in Proposition 5.1 can be disparate when ‖Pgood‖ is large or
δ(Km(A,v1),Ugood) is close to one. To obtain alternative lower bounds, approximate
the maximizing polynomial ψ in (3.5). Some intuitively appealing choices for the
roots of ψ ∈ Pm−1 include the Ritz values or harmonic Ritz values generated from
Km−1(A,Pgoodv1). (This is motivated by the fact that taking ψ to be a degree-m
polynomial with the m Ritz values from Km(A,Pgoodv1) as roots would zero the
denominator of the expression (3.5) for C1.)
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Fig. 5.1. The effect of a biased starting vector on gap convergence. The solid lines denote the
computed gap convergence curves for starting vectors v1 that form angles of θ radians with Ugood.
The dotted lines show the bound derived from Theorem 3.5 for each value of θ. The black dots
denote the values of C1. In the vertical axis label, K� is a shorthand for K�(A,v1).

5.2. An illustration of starting vector influence. Consider a Hermitian
matrix A ∈ C

128×128 with eight good eigenvalues uniformly distributed in the interval
[1, 2]. The remaining eigenvalues uniformly fill the interval [−1, 0]. Since A is normal,
the constants C0 and C2 are trivial, C0 = C2 = 1. Theorem 3.5 thus bounds gap
convergence as the product of the constant C1, which depends on the starting vector,
and a polynomial approximation problem, which is independent of it. Taking Ωbad =
[−1, 0] and Ωgood = [1, 2], Theorem 4.5 yields an asymptotic convergence factor of
3 −

√
2 ≈ 0.1716, an expedient rate due to the good separation of Ωgood from Ωbad.

To study the role of C1, we construct six different starting vectors v1 that form
angles of θ = 10−15, 10−12, 10−9, 10−6, 10−3, 1 radians with Ugood. (Each starting
vector has equal components in each unwanted eigenvector direction.) Figure 5.1
shows the result of this experiment. The gap convergence curves are solid lines;
the dotted lines show bounds from Theorem 3.5. For the finite-degree polynomial
approximation problem in Theorem 3.5, we use Chebyshev polynomials for Ωbad =
[−1, 0]. (Since δ(Ugood,K�(A,v1)) = 1 when � < m = dim Ugood = 8, we show
the complementary measure δ(K�(A,v1),Ugood) for the first seven iterations.) As
predicted by our bounds, the asymptotic convergence rate appears largely independent
of the orientation of v1. Interestingly, even a considerable starting vector bias toward
Ugood yields only a modest improvement in convergence, which may appear even less
significant for problems with slower convergence rates.

5.3. Bounding C2. In contrast to C1, which was strongly linked to the ori-
entation of the starting vector v1 with respect to the good invariant subspace, the
constant C2 has a somewhat more diffuse interpretation. C2 captures the effect of
the nonnormality of A, yet ambiguity in the selection of Ωgood and Ωbad injects wide
variability to the values C2 can achieve. Generally speaking, choosing the sets Ωgood

and Ωbad to be overly large yields a small constant C2 at the expense of a slow conver-
gence rate for the polynomial approximation problem. Shrinking these sets increases
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the constant but improves the predicted convergence rate. The smallest possible sets
that can be chosen for Ωgood and Ωbad are the sets of good and bad eigenvalues, re-
spectively. If A is diagonalizable, it is possible to pose the approximation problem
over these discrete point sets, at the expense of a potentially large C2 term arising
from eigenvector conditioning.

Lemma 5.2. Suppose Σ is a subset of the spectrum of A consisting only of non-
defective eigenvalues, and let U denote the maximal invariant subspace associated with
eigenvalues in Σ. If the columns of X are eigenvectors of A forming a basis for U,
then

κ(Σ) ≤ cond2(X).

(The condition number cond2(·) is the ratio of the maximum to the minimum
nonzero singular value.)

Proof. Observe that Π ≡ X (X∗X)
−1

X∗ defines an orthogonal projection onto
U, and suppose Λ is a diagonal matrix with entries in Σ such that AX = XΛ. Then
for any function f that is analytic on Σ, f(A)X = Xf(Λ), and

‖f(A)‖U = ‖f(A)X (X∗X)
−1

X∗‖
= ‖Xf(Λ) (X∗X)

−1
X∗‖

≤ ‖X‖ ‖ (X∗X)
−1

X∗‖ ‖f(Λ)‖
= cond2(X) max

λ∈Σ
|f(λ)|.

Now if Ωgood and Ωbad in Theorem 3.5 are precisely the sets of good and bad
eigenvalues of A, respectively, Lemma 5.2 leads to a bound on C2.

First Corollary to Theorem 3.5. To the conditions of Theorem 3.5, add
the assumption that A is diagonalizable,

A[Xgood,Xbad] = [Xgood,Xbad] diag(Λgood, Λbad).

Then

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 Ĉ2 min

φ∈P�∗

maxj=L+1,...,N |φ(λj)Ψνp(λj)|
mink=1,...,L |φ(λk)Ψνp(λk)|

,(5.1)

where C0 and C1 are as defined in Theorems 3.3 and 3.4 and

Ĉ2 ≡ cond2(Xgood) cond2(Xbad).

When A is far from normal, the constant Ĉ2 will typically be large; it grows
infinite as A tends toward a defective matrix. However, such extreme situations are
not necessarily associated with severe degradation in convergence behavior, and so
the bound (5.1) will be most appropriate when A is either normal or nearly so.

Nonnormality can complicate invariant subspace computation in a variety of ways.
The good eigenvalues can be individually ill-conditioned, with cond2(Xgood) � 1,
while the associated invariant subspace is perfectly conditioned. In other cases, one
may find the good eigenvalues are well-conditioned, while the bad eigenvalues are
highly nonnormal (as when cond2(Xbad) � cond2(Xgood) ≈ 1).7 In either case, the

7This is the case for the Markov chain example described in section 6.4. Trefethen describes
another example, the Gauss–Seidel iteration matrix for the centered difference discretization of the
second derivative [43, Ex. 10].
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good invariant subspace may still have physical significance, and we would like to
understand how this ill-conditioning affects the rate at which we can compute it.

Since nonnormal matrices are of special interest, consideration of pseudospectra
yields a natural approach that often can provide sharper, more descriptive convergence
bounds. Recall that the ε-pseudospectrum [42, 43] is the set

Λε(A) ≡ {z ∈ C : ‖(z − A)−1‖ ≥ ε−1},

or, equivalently, Λε(A) = {z ∈ Λ(A + E) : ‖E‖ ≤ ε}, where Λ(M) denotes the set of
eigenvalues of a matrix M.

For a fixed ε, Λε(A) is a closed set in the complex plane consisting of the union of
no more than N connected sets, each of which must contain at least one eigenvalue. As
ε → 0, Λε(A) tends to N disjoint disks (whose radii depend on eigenvalue conditioning
and defectiveness) centered at and shrinking around the N distinct eigenvalues.

Lemma 5.3. Let U be an invariant subspace of A and suppose Σ is the set of
eigenvalues associated with U.

(a) Let Ω be a set containing Σ but no eigenvalues of A outside Σ, and suppose
the boundary ∂Ω is the finite union of positively oriented Jordan curves. Then

κ(Ω) ≤ 1

2π

∫
∂Ω

‖(z − A)−1‖U |dz|.(5.2)

(b) Let Σε contain the union of those connected components of Λε(A) that include
λ ∈ Σ, and suppose further that Σε contains no eigenvalues outside of Σ and its
boundary ∂Σε is the finite union of positively oriented Jordan curves. Then

κ(Σε) ≤
L(∂Σε)

2πε
,(5.3)

where L(∂Σε) is the length of the boundary of Σε.
Proof. For part (a), let Π be the orthogonal projector onto the given invariant

subspace U and let P be the spectral projector for A associated with U. For any
function f analytic on Ω, ‖f(A)‖U = ‖f(A)Π‖ = ‖f(A)PΠ‖ ≤ ‖f(A)P‖. Now,

f(A)P =
1

2πi

∫
∂Ω

f(z)(z − A)−1 dz.

Thus for any vector x ∈ U,

‖f(A)x‖ ≤ 1

2π

∫
∂Ω

|f(z)| ‖(z − A)−1x‖ |dz|

≤
(

1

2π

∫
∂Ω

‖(z − A)−1‖U |dz|
)

max
z∈∂Ω

|f(z)| ‖x‖.

But since f is analytic on Ω, maxz∈∂Ω |f(z)| = maxz∈Ω |f(z)|. Part (b) follows
from (a) by assigning Ω = Σε.

Pseudospectral bounds were developed by Trefethen to bound the GMRES resid-
ual norm [42], and Simoncini has used a similar approach to analyze block-Arnoldi
convergence [37]. In the single eigenvector case, her Theorem 3.1 closely resem-
bles our (5.6) below. (Lemma 5.3 could easily be sharpened to instead involve
Λε(U

∗AU), where the columns of U form an orthonormal basis for Ugood; note that
Λε(U

∗AU) ⊆ Λε(A) [40].)
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The pseudospectral approach leads to a robust alternative to the eigenvector-
based bound (5.1).8 Suppose ε is sufficiently small that the components of the ε-
pseudospectrum enclosing the good eigenvalues are disjoint from those components
enclosing the bad eigenvalues. Λε(A) can then be contained in the two disjoint sets
Σgood

ε and Σbad
ε , leading to an alternative bound.

Second Corollary to Theorem 3.5. Assume the conditions of Theorem 3.5
and suppose that ε > 0 is sufficiently small that Σgood

ε ∩ Σbad
ε = ∅. Then, provided

Ψνp(z) has no roots in Σgood
ε , and the boundaries of Σgood

ε and Σbad
ε are finite unions

of positively oriented Jordan curves,

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 C̃2(ε) min

φ∈P�∗

max{|φ(z)Ψνp(z)| : z ∈ Σbad
ε }

min{|φ(z)Ψνp(z)| : z ∈ Σgood
ε }

,(5.4)

where C0 and C1 are as defined in Theorems 3.3 and 3.4, and

C̃2(ε) ≡
L(∂Σgood

ε ) L(∂Σbad
ε )

4π2ε2
.(5.5)

L(∂Σgood
ε ) and L(∂Σbad

ε ) are the boundary lengths of Σgood
ε and Σbad

ε , respectively.
This pseudospectral bound holds for a range of ε-values, providing a natural

mechanism for adjusting the sets Ωgood and Ωbad. As ε gets smaller, C̃2(ε) generally
increases, but the convergence rate induced by the polynomial approximation problem
improves, since the sets on which the approximation problem is posed recede from one
another. For the most descriptive convergence bound, take the envelope of individual
bounds corresponding to a variety of ε-values; see Figures 6.1 and 6.3. Of course, the
bound (5.4) is only meaningful when ε is sufficiently small that Σgood

ε ∩Σbad
ε = ∅. The

need to take ε particularly small to satisfy this condition may signal an ill-conditioned
problem; consider enlarging the set of good eigenvalues.

In some situations, one may wish to use different values of ε for the good and bad
pseudospectra, in which case (5.4) changes in the obvious way. Furthermore, when
the good eigenvalues are normal (i.e., one can take cond2(Xgood) = 1), it is best to
combine the pseudospectra and eigenvector approaches to obtain

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 L(Σbad

ε )

2πε
min
φ∈P�∗

max{|φ(z)Ψνp(z)| : z ∈ Σbad
ε }

mink=1,...,L |φ(λk)Ψνp(λk)|
.(5.6)

We close this section by pointing out one nonnormal situation where the eigenvec-
tor-based bound (5.1) can be dramatically superior to the pseudospectral bound (5.4).
Suppose for simplicity that dimUgood = dimUbad with Ugood ≈ Ubad for some diag-
onalizable A. It is possible for the basis vectors in Xgood and Xbad to be perfectly
conditioned on their own, but terribly conditioned if taken together, e.g.,

Xgood =

⎡⎢⎢⎣
1 0
0 1
0 0
0 0

⎤⎥⎥⎦ , Xbad =

⎡⎢⎢⎣
1 0
0 1
γ 0
0 γ

⎤⎥⎥⎦ ,

with 0 < |γ| � 1. This results in Ĉ2 = 1 but C̃2(ε) � 1 for usefully small values of ε.
(This can be remedied by considering the pseudospectra of A orthogonally projected

8Note that Greenbaum has demonstrated how more clever use of eigenvector information can
sometimes be superior to estimating integrals of the resolvent norm [15].
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onto Ugood and Ubad.) What is happening here? The more alike Ugood and Ubad

are, the more prominent their general orientation is in the Krylov subspace, possibly
resulting in an initial period of rapid sublinear convergence. Discriminating the fine
difference between Ugood and Ubad may still be challenging.

6. Some examples. How well does the machinery constructed in the previous
sections work? Here we demonstrate our bounds for a variety of examples. These
test problems are contrived to illustrate the effects we have described as cleanly as
possible. Eigenvalue problems from applications inevitably involve more complicated
spectral structure.

6.1. Influence of nonnormality on predicted rates. We begin with two ex-
amples involving nondiagonalizable matrices where pseudospectral convergence bounds
can be used to good effect. (While the examples in this subsection and the next are
defective, we emphasize that the pseudospectral bound can also be useful for diago-
nalizable matrices with large values of Ĉ2.) Define

A =

[
Dgood 0

0 J58(−1)

]
,(6.1)

where Dgood is a 6 × 6 diagonal matrix containing good eigenvalues uniformly dis-
tributed in [1, 2], and J58(−1) is a Jordan block of dimension 58 with the bad eigen-
value λ = −1 on the main diagonal and 1’s on the first superdiagonal. Note that
Ugood ⊥ Ubad, so C0 = 1. Since the good eigenvalues are normal, we apply the hy-
brid pseudospectral bound (5.6). The ε-pseudospectrum of a direct sum of matrices
is the union of the ε-pseudospectra of each component matrix [45], so we need fo-
cus only on the pseudospectra of the Jordan block, which are circular disks for all
ε > 0 [30]; see Figure 6.1. It follows that C̃2(ε) = rε/ε, where rε is the radius of
Σbad

ε = Λε(J58(−1)), determined numerically. For φ ∈ P�∗ we take the Chebyshev
polynomial for Σbad

ε , φ(z) = (z + 1)�
∗
. For all ε such that rε < 2, (5.6) gives

δ(Ugood,K�(A,v1)) ≤
C1rε
ε

(rε
2

)�∗
,(6.2)

where we have used the fact that |φ(λ)| ≥ 2 for all good eigenvalues λ. The conver-
gence curve and corresponding bounds are shown in Figure 6.1 for the starting vector
v1 with 1/

√
n in each component; no restarting is performed. Interestingly, for small

values of ε the bound (5.6) accurately captures the finite termination that must occur
when � = n = 64, a trait exhibited by pseudospectral bounds in other contexts.

Our second example is the same, except the good eigenvalues are now replaced
with a Jordan block,

A =

[
J6(

3
2 ) 0

0 J58(−1)

]
,(6.3)

where J6(
3
2 ) is a 6× 6 Jordan block with 3

2 on the main diagonal and 1’s on the first
superdiagonal; J58(−1) is as before. Again note that Ugood ⊥ Ubad, implying C0 = 1.
Since both the good and bad eigenvalues are defective, apply the pseudospectral
bound (5.4). Recalling that the pseudospectra of Jordan blocks are circular disks,
let rbad

ε and rgood
ε denote the radii of Σbad

ε = Λε(J58(−1)) and Σgood
ε = Λε(J6(

3
2 )),

respectively; see the left plot of Figure 6.2. The Second Corollary to Theorem 3.5
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Fig. 6.1. On the left, good eigenvalues (×) and pseudospectral boundaries ∂Σbad
ε for ε = 10−2,

10−5, 10−15, and 10−100, where A is given by (6.1). (The bad eigenvalue (·) is obscured by the ε =
10−100 boundary.) On the right, gap convergence (solid line) together with the bound (6.2) (dotted
lines) for each of the pseudospectral curves shown on the left. For small values of ε, (6.2) captures
the finite termination that must occur at the 64th iteration.
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Fig. 6.2. On the left, bad eigenvalue (·), good eigenvalue (×), and pseudospectral boundaries

∂Σbad
ε and ∂Σgood

ε for A given by (6.3) and ε = 10−2, 10−3, and 10−5. On the right, gap conver-
gence (solid line) with the bound (6.4) (dotted lines) for the three ε values used in the left plot.

holds whenever rbad
ε + rgood

ε < 5
2 . For such ε, C̃2(ε) = rbad

ε rgood
ε /ε2 and

δ(Ugood,K�(A,v1)) ≤ C1
rbad
ε rgood

ε

ε2

(
rbad
ε

5
2 − rgood

ε

)�∗
,(6.4)

where again we have taken for φ ∈ P�∗ the Chebyshev polynomial for Σbad
ε , φ(z) =

(z + 1)�
∗
. The convergence curve and corresponding bounds are shown in Figure 6.2

for the starting vector v1 with 1/
√
n in each component; no restarting is performed.

6.2. Superlinear effects due to nonnormality. Our final example of pseu-
dospectral bounds addresses the matrix
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Fig. 6.3. On the left, bad eigenvalue (·), good eigenvalue (×), and pseudospectral boundaries
∂Σbad

ε for A given by (6.5) and ε = 10−2, . . . , 10−12. On the right, gap convergence (solid line)
with the bound (6.4) (dotted lines) for the eleven ε values shown in the left plot.

A =

[
0 0
0 F

]
,(6.5)

where there is a single good eigenvalue λ = 0 (with multiplicity 1) and a bad eigenvalue
λ = − 1

3 associated with the 63 × 63 bidiagonal matrix F, which has − 1
3 in the main

diagonal entries and 1/j in the (j, j + 1) entry of the superdiagonal. Like the Jordan
blocks described before, the pseudospectra of F are circular disks [30], but the radii
of these disks shrink much more rapidly as ε decreases than observed for the Jordan
block. As a result, the convergence rate steadily improves as ε gets smaller; this is
compensated by growing C̃2(ε) values. Taking φ(z) = (z + 1

3 )�
∗
, we obtain

δ(Ugood,K�(A,v1)) ≤
C1rε
ε

(3rε)
�∗
,(6.6)

provided rε <
1
3 , where rε is the radius of Σbad

ε . Figure 6.3 shows the spectrum of A
and pseudospectra of F. As ε gets smaller, the bound (6.6) traces out an envelope
that predicts early stagnation followed by improving linear convergence rates. This is
“superlinear” convergence, but of a different nature from that described in section 4.3.
Figure 6.3 shows these bounds along with the gap convergence curve for a vector v1

with real entries drawn from the standard normal distribution. Pseudospectral bounds
for GMRES exhibit similar superlinear behavior for matrices like F [10, 12]. Although
all the examples here have used defective matrices, these bounds are also appropriate
for diagonalizable matrices with a large eigenvector condition number.

6.3. Shift selection for restarted algorithms. The results of section 4 in-
dicate that effective restart strategies can be constructed using optimal polynomials
associated with sets containing the bad eigenvalues. In this section, we give some ex-
amples of how choices for Ψνp based on partial information (or misinformation) about
bad eigenvalue location affect the observed convergence rates and illustrate how well
our bounds can predict this.

Consider the 200 × 200 upper triangular matrix

A =

[
Dgood C

0 Dbad

]
,
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Fig. 6.4. Unrestarted subspace. On the left, good and bad eigenvalues are shown in the “poten-
tial field” generated by the bad eigenvalues. The colorbar is calibrated to show effective convergence
rates for different components of Ugood. The right plot shows the observed gap history (solid line)
together with a bound (dashed line) derived from the First Corollary to Theorem 3.5.

where Dgood is a 16 × 16 diagonal matrix of good eigenvalues, distributed uniformly
around the circle in the complex plane centered at 3 with radius 1; Dbad is a diagonal
matrix containing the bad eigenvalues distributed uniformly along the line segment
(designated Ibad) parallel to the imaginary axis connecting the points −1 ± 5i; C is
a full (row) rank matrix scaled so that ‖Pgood‖ ≈ 1000. The starting vector, v1,
has normally distributed random complex entries. (The same v1 was used for all
experiments shown in this subsection.)

Figure 6.4 compares the predicted and observed convergence curves for the un-
restarted iteration, where the Krylov subspace grows without bound. The left plot
displays the equipotentials of g[z, Ibad]—the physical analog is the potential field gen-
erated by a continuous (line) charge distribution spread over Ibad. The color bar is
calibrated to show exp(−g[z, Ibad]), giving the predicted convergence rates at locations
in the complex plane if good eigenvalues were present there. In particular, the lowest
equipotential contour passing through a good eigenvalue is shown; it leads via (4.5) to
a predicted convergence rate of ≈ 0.566. The right plot shows the iteration history of
δ(Ugood,K�(A,v1)) versus the iteration index �. After an early sublinear surge that
flattens out near 1/‖Pgood‖, an observed linear rate of ≈ 0.539 emerges. In separate
experiments (not shown), we have varied the magnitude of ‖C‖ (in effect changing
‖Pgood‖) and have observed variations in the sublinear stagnation level roughly pro-
portional to 1/‖Pgood‖, consistent with the discussion surrounding Figure 2.1. The
convergence bound is derived from the First Corollary to Theorem 3.5, using for φ
Chebyshev polynomials for Ibad. (For all experiments in this subsection, C0 =

√
2,

C1 ≈ 4.4325 × 1011, Ĉ2 ≈ 1.2439 × 103.)

Figure 6.5 shows results for polynomial restarts using fast Leja points [3] asso-
ciated with Ibad. These appear as a dense line of white dots atop the black band of
bad eigenvalues. The base dimension is 20 and restarts are each of order 5. (The
Krylov subspace dimension never exceeds 25.) The left plot displays the effective
potential, g[z,Ωbad], generated by 180 fast Leja points—Ωbad is the smallest poly-
nomial lemniscate generated by the aggregate filter polynomial that contains all bad
eigenvalues. The lowest equipotential contour passing through a good eigenvalue is
shown; it leads via (4.5) and Example 4.2 to a predicted convergence rate of ≈ 0.576.
The bound on the right was obtained from the First Corollary to Theorem 3.5, using



1104 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI

1.0  

0.576     

0.4  

−8 −4 0 4 8
−8

−4

0

4

8

0 50 100 150 200
10

−14

10
−10

10
−5

10
0

Leja Shifts
Thm. 3.5
No Restarts

iteration, νp + �

δ
(U

g
o
o
d
,K

�
(A

,Ψ
ν
p
(A

)v
1
))

1/‖Pgood‖ Observed
rate ≈ 0.562

Predicted
rate ≈ 0.576

����
���

Fig. 6.5. Polynomial restarts at fast Leja points of Ibad (band of closely spaced white dots).
The base dimension is 20 and restarts are each of degree p = 5 (so the subspace dimension never
exceeds 25).
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Fig. 6.6. Polynomial restarts with fast Leja points (twin bands of closely spaced white dots)
for two subintervals covering only 60% of the bad eigenvalues. The subspace dimensions are as in
Figure 6.5.

Chebyshev polynomials for Ibad up to the base dimension, then including the shift
polynomials.

Figures 6.6 and 6.7 show the effect of poorer choices for the filter shifts. Suppose
we mistakenly believe the bad eigenvalues to be concentrated toward the ends of the
interval Ibad and choose filter shifts accordingly grouped in two subintervals that omit
the central portion of Ibad (which we believe to be devoid of bad eigenvalues). We use
fast Leja points again but this time for pairs of disjoint intervals that in fact cover only
60% and 20%, respectively, of the bad eigenvalues. These are asymptotically optimal
filter shifts for misguided guesses of the bad eigenvalue distribution. Ωbad is again the
smallest polynomial lemniscate generated by 180 fast Leja points that contains all bad
eigenvalues. Here it takes on a more pronounced dumb-bell appearance, reflecting the
absence of zeros from the middle of Ibad. As before, the base dimension is 20 and
restarts are each of order 5. The convergence rate is seen to deteriorate to ≈ 0.707
and ≈ 0.807, respectively, and is predicted to within an accuracy of roughly 3%–5.2%.
By comparing the equipotential contours of Figures 6.4 and 6.5 with those of Figures
6.6 and 6.7, notice the filter shifts in the latter cases create a potential significantly
different from what either the bad eigenvalues or optimal filter shifts would generate.
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Fig. 6.7. Polynomial restarts with fast Leja points (twin bands of closely spaced white dots)
for two subintervals covering only 20% of the bad eigenvalues. The subspace dimensions are as in
Figure 6.5.
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Fig. 6.8. Polynomial restarts using exact shifts (white dots) determined by choosing Ritz values
with real part smaller than 1. The subspace dimension never exceeds 20.

Figure 6.8 shows the result of using Sorensen’s exact shifts. The subspace dimension
is limited to be no larger than 20, and a Ritz value is used as a shift if it has real
part smaller than 1. (The early convergence plateaus occur when the subspace is
compressed to have dimension smaller than the number of good eigenvalues.) The
potential plot on the left is based on 180 exact shifts. Although these shifts fall
outside the convex hull of the bad eigenvalues, they effectively recover the potential
generated by those eigenvalues. The convergence rate is predicted to within 2% of
the observed rate. The use of exact shifts yields a convergence rate within 25% of
the rate for the unrestarted iteration (Figure 6.4) at a lower computational cost and
without requiring a priori localization of bad eigenvalues to determine optimal shifts
(as in Figure 6.5 for good localization and Figures 6.6 and 6.7 for poor localization).

6.4. Markov chain example. We close by examining a more realistic eigen-
value problem, taking A to be the transition matrix for a Markov chain that describes
a random walk on a triangular lattice. See Saad [35, sect. II.5.1] for details of this
example, a common test problem for iterative eigenvalue algorithms. Since all the
rows of a transition matrix sum to 1, A must have an eigenvalue λ = 1, and the
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Fig. 6.9. Eigenvalues and pseudospectra for the random walk transition matrix for a triangular
lattice with 1275 nodes. The left plot shows the spectrum and boundaries of ε-pseudospectra for ε =
10−1, . . . , 10−8. The right plot zooms around λ = 1, indicating ε-pseudospectra for ε = 10−2, 10−3.

Perron–Frobenius theorem assures this eigenvalue is simple (see, e.g., [5, Thm. 1.4]).
The left eigenvector corresponding to λ = 1 determines a stationary distribution of
the Markov chain, so we are interested in the convergence of δ(Ugood,K�(A

∗,v1)),
where Ugood is the invariant subspace of A∗ for λ = 1. Here we consider a lattice with
a base and height of 50 nodes, yielding a transition matrix of dimension n = 1275.
This matrix exhibits a significant degree of nonnormality, mostly associated with
ill-conditioned eigenvalues far from λ = 1, as one can infer from the pseudospectra
illustrated in Figure 6.9. Unlike the previous examples in this section, the good eigen-
value is quite close to bad eigenvalues, as highlighted by the close-up on the right of
Figure 6.9.

The eigenvalues of A appear to be real with λ = 0 having algebraic and geometric
multiplicity 25. (Though we formally stipulate that A be nonderogatory in section 3,
our proofs require only that the good eigenvalues be nonderogatory.) The bound (5.1)
based on the conditioning of the matrices of good and bad eigenvectors is simplest to
evaluate. We have C0 =

√
2, and compute Ĉ2 ≈ 3.546 × 109; for a particular starting

vector with normally distributed real random entries, C1 ≈ 9.933. Labeling the
eigenvalues from right to left, the polynomial approximation problem in (5.1) reduces
in this single eigenvector case to a minimax approximation on Λbad = {λ2, . . . , λn}
subject to normalization at λ1 = 1. Bounding this approximation problem using
Chebyshev polynomials on [λn, λ2] gives a pessimistic result, as can be seen in the
convergence plot in Figure 6.10. The superlinear bounds of Theorem 4.7 yield a
marked improvement. In the language of Theorem 4.7, we take Ωk = {λj}nj=k+1 and
reduce to an approximation problem over Ωr+1 for r = 1, . . . , 10, for which we use
Chebyshev polynomials on [λn, λr]. An even better bound is obtained by treating
Λbad completely as a discrete point set. One approachable way of doing this is to take
Λgood = {λ1} and note that

min
φ∈P�∗

max{|φ(λ)| : λ ∈ Λbad}
min{|φ(λ)| : λ ∈ Λgood}

= min
φ∈P�∗

φ(λ1)=1

max
λ∈Λbad

|φ(λ)| ≤ min
φ∈P�∗
φ(0)=1

‖φ(S)r‖,(6.7)

where S = diag(λ2−λ1, . . . , λn−λ1) and r = [1, 1, . . . , 1]T. The last term of (6.7) can
be computed as the residual norm of the GMRES algorithm applied to S with initial
residual r; this is no more than a factor of

√
n worse than the first term in (6.7). The
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Fig. 6.10. Gap convergence for the random walk example, n = 1275 (solid line). The dashed
lines represent the bound (5.1). The best result is obtained when the bad eigenvalues are treated as
a discrete point set for the approximation problem, while a slower rate is predicted when the bad
eigenvalues are treated as an interval. The dotted lines utilize the superlinear bounds of Theorem 4.7
for r = 1, . . . , 10.

resultant bound is shown in Figure 6.10. Alternatively, the minimax problem on the
left-hand side of (6.7) could be solved directly via a linear program.
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[1] M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length and convergence
of GMRES, BIT, 38 (1998), pp. 636–643.

[2] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[3] J. Baglama, D. Calvetti, and L. Reichel, Fast Leja points, Electron. Trans. Numer. Anal.,
7 (1998), pp. 124–140.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.

[6] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for
large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), pp. 1–21.

[7] F. Chatelin, Eigenvalues of Matrices, Wiley, Chichester, UK, 1993.
[8] J. B. Conway, Functions of One Complex Variable, 2nd ed., Springer-Verlag, New York, 1978.
[9] G. De Samblanx and A. Bultheel, Nested Lanczos: Implicitly restarting an unsymmetric

Lanczos algorithm, Numer. Algorithms, 18 (1998), pp. 31–50.
[10] T. A. Driscoll, K.-C. Toh, and L. N. Trefethen, From potential theory to matrix iterations

in six steps, SIAM Rev., 40 (1998), pp. 547–578.
[11] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Wiley, New York,

1971.



1108 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI

[12] M. Embree, Convergence of Krylov Subspace Methods for Nonnormal Matrices, D.Phil. Thesis,
Oxford University, Oxford, UK, 2000.

[13] F. R. Gantmacher, The Theory of Matrices, Vol. 1, 2nd ed., Chelsea, New York, 1959.
[14] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins, Baltimore,

MD, 1996.
[15] A. Greenbaum, Using the Cauchy Integral Formula and the Partial Fractions Decomposition

of the Resolvent to Estimate ‖f(A)‖, manuscript, University of Washington, Seattle, WA,
2000.

[16] E. J. Grimme, D. C. Sorensen, and P. van Dooren, Model reduction of state space systems
via an implicitly restarted Lanczos method, Numer. Algorithms, 12 (1995), pp. 1–31.

[17] M. Haviv and Y. Ritov, Bounds on the error of an approximate invariant subspace for non-
self-adjoint matrices, Numer. Math., 67 (1994), pp. 491–500.

[18] V. Heuveline and M. Sadkane, Arnoldi-Faber method for large non Hermitian eigenvalue
problems, Electron. Trans. Numer. Anal., 5 (1997), pp. 62–76.

[19] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991.

[20] Z. Jia, The convergence of generalized Lanczos methods for large unsymmetric eigenproblems,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 843–862.

[21] Z. Jia and G. W. Stewart, An analysis of the Rayleigh–Ritz method for approximating
eigenspaces, Math. Comp., 70 (2001), pp. 637–647.

[22] T. Kato, Estimation of iterated matrices, with application to the von Neumann condition,
Numer. Math., 2 (1960), pp. 22–29.

[23] T. Kato, Perturbation Theory for Linear Operators, corrected 2nd ed., Springer-Verlag, Berlin,
1980.

[24] L. Knizhnerman, Error bounds for the Arnoldi method: A set of extreme eigenpairs, Linear
Algebra Appl., 296 (1999), pp. 191–211.

[25] R. B. Lehoucq, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 551–562.

[26] A. L. Levin and E. B. Saff, Optimal ray sequences of rational functions connected with the
Zolotarev problem, Constr. Approx., 10 (1994), pp. 235–273.

[27] R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,
Math. Comp., 65 (1996), pp. 1213–1230.

[28] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, Switzer-
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