

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 5, pp. 3057–3086

A REGULARIZED GAUSS–NEWTON TRUST REGION APPROACH
TO IMAGING IN DIFFUSE OPTICAL TOMOGRAPHY∗

ERIC DE STURLER† AND MISHA E. KILMER‡

Abstract. We present a new algorithm for the solution of nonlinear least squares problems
arising from parameterized imaging problems with diffuse optical tomographic data [D. Boas et al.,
IEEE Signal Process. Mag., 18 (2001), pp. 57–75]. The parameterization arises from the use of
parametric level sets for regularization [M. E. Kilmer et al., Proc. SPIE, 5559 (2004), pp. 381–
391], [A. Aghasi, M. E. Kilmer, and E. L. Miller, SIAM J. Imaging Sci., 4 (2011), pp. 618–650].
Such problems lead to Jacobians that have relatively few columns, a relatively modest number of
rows, and are ill-conditioned. Moreover, such problems have function and Jacobian evaluations
that are computationally expensive. Our optimization algorithm is appropriate for any inverse or
imaging problem with those characteristics. In fact, we expect our algorithm to be effective for more
general problems with ill-conditioned Jacobians. The algorithm aims to minimize the total number
of function and Jacobian evaluations by analyzing which spectral components of the Gauss–Newton
direction should be discarded or damped. The analysis considers for each component the reduction of
the objective function and the contribution to the search direction, restricting the computed search
direction to be within a trust region. The result is a truncated SVD-like approach to choosing
the search direction. However, we do not necessarily discard components in order of decreasing
singular value, and some components may be scaled to maintain fidelity to the trust region model.
Our algorithm uses the Basic Trust Region Algorithm from [A. R. Conn, N. I. M. Gould, and
Ph. L. Toint, Trust-Region Methods, SIAM, Philadelphia, 2000]. We prove that our algorithm is
globally convergent to a critical point. Our numerical results show that the new algorithm generally
outperforms competing methods applied to the DOT imaging problem with parametric level sets,
and regularly does so by a significant factor.

Key words. nonlinear least squares, Gauss–Newton, Levenberg–Marquardt, optimization, reg-
ularization, diffuse optical tomography

AMS subject classifications. 65K05, 65F22, 90C30, 90C90

DOI. 10.1137/100798181

1. Introduction. To solve an inverse problem for a given system, we must com-
pute the input that was responsible for generating a set of measured data. This
solution is based on an assumed model of the relationship between the input and
output of a system. Mathematically, this is represented as

(1.1) y = h(p) + η,

where the vector p denotes the input, y is the output data vector, and η is the unknown
noise in the measured data. In this paper, we are interested in models h(p) that are
nonlinear in p. In particular, we use regularization by parametric level sets [18, 1]
(see section 2), which reduces the imaging problem to the nonlinear optimization of
a regularized (well-posed) problem for the vector of nonlinear parameters p.

A typical approach to estimating p is to solve the nonlinear least squares problem

(1.2) min
p

1

2
‖W (h(p)− y)‖22 = min

p

1

2
r(p)T r(p) = min

p
F (p),

∗Received by the editors June 10, 2010; accepted for publication (in revised form) August 17,
2011; published electronically October 27, 2011.

http://www.siam.org/journals/sisc/33-5/79818.html
†Mathematics Department, Virginia Tech, Blacksburg, VA 24061 (sturler@vt.edu). This author’s

research was supported by NSF grant DMR-0325939.
‡Department of Mathematics, Tufts University, Medford, MA 20155 (misha.kilmer@tufts.edu).

This author’s research was supported by NSF grants 0139968 and 0342559.

3057

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3058 ERIC DE STURLER AND MISHA E. KILMER

with r(p) = Wh(p) − Wy, using an iterative nonlinear solver. As the objective
function contains noise from measured data, we use a discrepancy principle–based
stopping criterion to avoid wasting computational effort trying to resolve the noise.
The discrepancy principle states that one should stop iterating when the norm of the
residual reaches the norm of the (weighted) noise vector [17]. Here, W denotes a
diagonal weighting matrix. The purpose of W is to scale the noise such that Wη is
white, that is, the power spectrum of the vector Wη is flat.

As our regularization and parameterization approach has been introduced and
discussed in [18, 1], in this paper, we focus on the resulting optimization (1.2). We
briefly describe the parameterized diffuse optical tomographic (DOT) models in sec-
tion 2. We focus on solving problems of the form (1.2) where the unknown p is of
low to modest dimension, the Jacobian J(p) for r(p) is of modest size but modestly
to severely ill-conditioned, evaluating h(p) and/or J(p) is computationally expensive,
and computing the Hessian is either computationally intractable or not worth the
cost. Specifically, we concentrate on the problem of reconstructing images from DOT
data, using parametric level sets for regularization, where these features are common.
However, we stress that the nonlinear least squares method introduced here should
be applicable to more general problems for which our assumptions are satisfied. It
is important to notice that the use of parametric level sets leads to a well-posed op-
timization problem, which does not need further regularization in the optimization
algorithm. This is in contrast to the use of conventional level set methods in image
reconstruction, and similar inverse problems, where regularization is an important
issue; see [13, 9, 5, 24, 27, 26, 25].

Several well-known nonlinear iterative methods can be applied to solve (1.2).
The most popular are the Gauss–Newton (GN), damped Gauss–Newton (DGN), also
known as Gauss–Newton with a line search, and the Levenberg–Marquardt (LM)
methods [8]. Since we assume that computing the Hessian is infeasible or intractable,
a standard Newton approach is not applicable here. Quasi-Newton methods are also
possible candidates, as are so-called full Newton modifications to the standard Gauss–
Newton approach [8, 22] in which an extra term is added to JTJ prior to computing
the search direction with either GN or LM.

In this paper, we illustrate why the standard GN, DGN, and LM methods tend
to be inefficient for (1.2) under the given assumptions. To produce a more efficient
algorithm, we combine a trust region approach with the ideas underlying the trun-
cated singular value decomposition (TSVD) to compute a (more) effective solution
update from the trust region subproblem (see section 4). The underlying idea to our
approach is that the trust region algorithm deals effectively with the nonlinearity of
the optimization, but it does not account for the ill-conditioning of the Jacobian and
the noise in the residual. To deal with the ill-conditioning and the noise, we use a com-
bination of the TSVD and a criterion to balance the relative importance of an SVD
component to reducing the trust region model with its contribution to the length of
the solution update. Although this is not its usual application, we use the generalized
cross validation (GCV) method for this criterion. In [15], with a similar motivation,
the GCV method is combined with DGN and Tikhonov regularization to solve the
(original) ill-posed, nonlinear least squares problem. In [15], the GCV method is
used to compute (update in each iteration) a global regularization parameter to deal
with the noise, whereas the line search in DGN imposes a local regularization to deal
with the nonlinearity of the model. In [13], in the same context, the use of the GCV
method in combination with a trust region method is also briefly mentioned. However,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3059

an important difference with our approach is that in [15, 13] the parameter computed
by the GCV is necessary for (Tikhonov) regularization, whereas in our approach the
nonlinear problem is already regularized. So, neither the TSVD nor the GCV is used
for regularization, and the cut-off computed by the GCV does not always lead to
discarding components below the cut-off. Similarly, on some occasions no truncation
based on the SVD is actually done.

We note that truncating the SVD of the Jacobian to find a better search direc-
tion is not new; see, for example, [10, 2]. However, these methods typically rely on
truncating the singular values in order (i.e., traditional truncation) to combat the
ill-conditioning of J . In [10], for instance, the authors truncate based on a measure of
the so-called grade of J . Further, the methods of [10, 2] rely on information from an
estimate of H − JT J , where H denotes the Hessian, to improve the search direction.
Our technique is unique in that we analyze individual spectral contributions of the
residual to decide which components of the SVD are discarded or kept (but possibly
filtered). Additionally, unlike the methods of [10, 2], our method is tailored for use
with a trust region approach as opposed to a line search, and does not require esti-
mates of the “missing” part of the Hessian. In [23], a trust region approach is applied
to large-scale, discrete ill-posed problems, formulating the trust region subproblem as
a parameterized eigenvalue problem.

This paper is organized as follows. In section 2, we briefly state the DOT models
of interest. For details and further discussion of regularization by parametric level
sets we refer the reader to [18, 1]. In section 3, we analyze the potential pitfalls of
DGN, LM, and TSVD for the optimization problem (1.2) arising from the class of
problems that is our focus. Our algorithm for determining the optimization step is
given in section 4. We give theoretical results for our algorithm in section 5, followed
by numerical results in section 6. Conclusions and future work are the subject of
section 7.

2. DOT models. In DOT imaging, near infrared light is shined into the body,
and three-dimensional (3D) images of the diffusion and/or absorption of light inside
the tissue are reconstructed from the measured photon flux. We refer to the image of
diffusion in vector form as fd and the image of absorption as fa, where the vectors
are obtained by ordering the 3D images by column and across all slices. We use the
vector f to formally denote the vector of unknowns: if both absorption and diffusion
images are desired, then f = [fT

a , f
T
d]T ; otherwise, f = fa or f = fd, depending on

the task.
Both the linear and the nonlinear forward models that describe the mapping of

image data to measurements on the surface have been used extensively in the literature
(for background, see [3, 4]). We consider both cases in this work. Note that due to the
parameterization we employ for the images, even the linear forward model leads to
an optimization problem that is nonlinear in terms of the unknown parameter vector.
First, we describe briefly the parameterization of the image(s) in three dimensions.
Then we describe the forward model problems and the corresponding optimization
problems.

2.1. Image parameterization. In DOT imaging, the physics dictates that the
spatial resolution of the imaging problem is limited [4]. However, one can recover
regions of large inhomogeneities in the absorption and/or diffusion coefficient, which
may reveal the presence of some physical disorder (e.g., cancer). Therefore, we often
use a parametric imaging model to target these regions for recovery [18, 20, 1], re-
ducing the number of unknowns from the (very large) number of pixels/voxels in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3060 ERIC DE STURLER AND MISHA E. KILMER

image to the number of parameters. In this paper, we aim to recover images that are
almost piecewise constant, looking for anomalous regions of diffusion and absorption
on a possibly unknown constant background.

Our specific model is the parametric level set model, introduced in [18] for brain
imaging limited to the cortex (an essentially two-dimensional (2D) projected prob-
lem), and expanded to the fully 3D case as presented in [1]. We describe the model,
with some minor modifications, for the 3D case. This parameterization leads to a
regularized problem, and the image reconstruction, with respect to this model, is now
a well-posed optimization problem.

Consider the nth degree polynomial, q(x, y, z) =
∑

i,j,k cijkx
iyjzk, where i + j +

k ≤ n. We can evaluate this polynomial at discrete grid points using the matrix-vector
product Pc, where c is the vector of coefficients cijk under an appropriate ordering
and P is a matrix with corresponding entries xiyjzk, evaluated at grid points. We
define the diffusion image using the zero-level set of this function,

(2.1) fd =
ν tanh(α(d))

2
(e+ tanh(−βPc(d))) + γ(d)e,

where c(d) is the vector of polynomial coefficients for diffusion, e is a vector of all
ones, γ(d) is the estimate of the background diffusion value, γ(d) + ν tanh(α(d)) is
the estimate of the diffusion coefficient inside the anomaly with ν an appropriately
chosen constant, and β is a known (constant) scaling parameter to make the transition
of the tanh function “sharp.” Similarly, we define the absorption image as fa =
ν tanh(α(a))

2 (e+tanh(−βPc(a))) + γ(a)e. In this formulation, aiming to recover images
that are almost piecewise constant, we do not need a large number of parameters.
Hence the number of columns in the Jacobian, J(p), of r(p) will be modest. As the
number of sources, detectors, and frequencies tends to be limited, the size of the
Jacobian in DOT is not very large.

2.2. Linear forward model for DOT. In frequency domain imaging with a
linear model for both absorption and diffusion and using (for example) two frequencies,
we have Af + η = y (cf. (1.1)), where A has the following block structure:

(2.2) A =

⎡⎢⎢⎣
AR1a AR1d

AI1a AI1d

AR2a AR2d

AI2a AI2d

⎤⎥⎥⎦ =
[
Aa Ad

]
.

The subscripts translate as follows: R stands for real part, I stands for imaginary part,
1 and 2 refer to two different modulation frequencies, a stands for absorption, and d
stands for diffusion. Consequently, y = [yTR1 y

T
I1 y

T
R2 y

T
I2]

T . We note that A is dense,
and for most problems would have far more columns than rows (underdetermined
problem).

In the linear model, we assume the background absorption and/or diffusion are
known, and that the images we wish to obtain are in fact images of the perturbation
of the absorption and diffusion on this known background, i.e., γ(a) and γ(d) are both
zero. Under the parametric model, the vector of unknowns is the parameter vector

p = [(c(a))T , α(a), (c(d))T , α(d)]T ,

and the imaging problem becomes of the form (1.2), with

(2.3) h(p) = Af(p),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3061

where we have used the function notation f(p) to indicate that the entries of the
vector of pixel values in the two images depend on the parameter vector p.

It is well known that Aa and Ad are ill-conditioned, and that the ill-conditioning
in these matrices results in J(p) being ill-conditioned as well.1

2.3. Nonlinear forward model for DOT. We assume that the region to be
imaged is a rectangular region with a limited number of sources, Ns, on the top and
a limited number of detectors, Nd, on the top or the bottom or both. We caution the
reader that, in this section only, r, x, y, and z refer to spatial variables. We use the
diffusion model for photon flux/fluence φs,ω(r) given input gs(r) from [3]:

−∇ · (D(r)∇φs,ω(r)) + μa(r)φs,ω(r) + i
ω

ν
φs,ω(r) = 0

for r = (x, y, z) and − a < x < a, −b < y < b, 0 < z < c,

φs,ω(r) = 0 for 0 ≤ z ≤ c
and either x = −a, x = a, y = −b, or y = b,

.25φs,ω(r) +
D(r)

2

∂φs,ω(r)

∂ξ
= gs(r) for z = 0 or z = c.

Here, D(r) and μa(r) denote the diffusion and absorption coefficients, ξ denotes the
outward unit normal, i =

√−1, ω represents the frequency modulation of light, and
ν is the speed of light in the medium. The integer subscript s indicates the model
with a single source at a known position. Knowing the source and the functions D(r)
and μa(r) (given by (2.1) and the analogous expression for the absorption), we can
compute the corresponding φs,ω(r) everywhere, in particular at the detectors, i.e., at
a subset of grid points with z = 0 or z = c.

For given fd, fa, and ω, the photon flux measured at the detectors due to source
s is estimated by

(2.4) ψfd,fa,ω,s = Qdetφfd,fa,ω,s, where Afd,fa,ωφfd,fa,ω,s = gs,

and where Qdet contains the rows of the identity matrix that correspond to detector
locations, and the linear system on the right represents the discretization of the PDE
for a fixed source. Therefore, for given fd and fa, the vector of computedmeasurements
for frequency ωj and source si is

h
(i)
j =

[
Re(ψfd,fa,ωj,si)
Im(ψfd,fa,ωj ,si)

]
.

The images fd and fa are represented in terms of the parameter vector p, so if we
stack all data vectors for the ns sources and nω frequencies, we obtain the computed
results from (1.1):

h(p) = [h
(1)T
1 , h

(2)T
1 , . . . , h

(ns)T
1 , h

(1)T
2 , . . . , h(ns)T

nω
]T .

Therefore, the computational cost associated with a single function evaluation
is the cost of solving the large, sparse system (2.4) for all sources and frequencies.

1Clearly, if the polynomial degree is large, some of the ill-conditioning in J is attributable to
the choice of a monomial basis, and better polynomial bases may be advantageous. However, the
predominant difficulty is the presence of the matrices Aa and Ad, and ill-conditioning in J is therefore
unavoidable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3062 ERIC DE STURLER AND MISHA E. KILMER

Although there are methods for solving multiple such systems efficiently during the
course of a nonlinear solve for the images [19], it is clear that any optimization routine
for solving (1.2) must minimize the number of function evaluations.

In our application, the cost of a Jacobian evaluation is typically similar to the
cost of a function evaluation. Constructing the Jacobian is done using an adjoint-type
(or costate) approach that exploits the fact that the number of detectors is not large
(roughly equal to the number of sources), as discussed in [14] and [28, p. 88]. In
the interest of space, we provide only a brief outline. Using (2.4) and differentiating
ψfd,fa,ωj,si with respect to parameter pk gives

(2.5)
∂ψfd,fa,ωj ,si

∂pk
= −QdetA

−1
fd,fa,ωj

∂Afd,fa,ωj

∂pk
φfd,fa,ωj ,si .

Since Afd,fa,ωj does not depend on the source, si, we can compute QdetA
−1
fd,fa,ωj

for
each frequency, ωj , by solving

AT
fd,fa,ωj

GT
j = QT

det.(2.6)

Moreover, the matrices (∂/∂pk)Afd,fa,ωj have to be computed only once (per fre-
quency). Thus, the computational cost for evaluating J(p) after computing φfd,fa,ωj,si

for the function evaluation is mainly the cost of (2.6), which amounts to solving a num-
ber of linear systems equal to the number of detectors times the number of frequencies.
Solving such a sequence of linear systems can be done efficiently using Krylov sub-
space recycling [19], which substantially reduces the cost even further. Computing the
sparse matrix-vector products [(∂/∂pk)Afd,fa,ωj]φfd,fa,ωj,si introduces only a modest
additional cost as long as the number of parameters is not large.

Therefore, assuming that the number of sources and the number of detectors are
roughly equal and that the number of parameters is relatively small, the cost of a
Jacobian evaluation and a function evaluation are about the same.

3. Background and motivation. We now discuss the problems for nonlin-
ear least squares algorithms arising from ill-conditioned Jacobians (of the nonlinear
residual) and motivate our new algorithm. In the application considered here, DOT,
in spite of the regularization, the ill-posedness of the underlying problem causes the
Jacobians to be ill-conditioned, though typically not (nearly) singular.

In general, we use a local quadratic model of the objective function F (p) in
(1.2) to compute an update to the current iterate. This is based on the reasonable
assumption that there is a region around the current iterate in which such a local
model is sufficiently accurate to produce a useful update. We refer to this region as
the trust region,2 and we want our update to lie inside the trust region.

Since the second derivatives of the nonlinear residual r(p) with respect to p are
usually hard or very expensive to compute, the full quadratic approximation to F (p)
is rarely used. Especially in the small residual case, when ‖r(p)‖ is small compared
with ‖∇r(p)‖ near a regularized solution, this is warranted by the fact that near
a regularized solution ∇2F (p) ≈ ∇r(p)T∇r(p). Ignoring the term ∇2r(p) in the
quadratic model leads to the GN model at the current approximate solution pc [8],
F (p) ≈ mGN(p):

mGN(p) =
1

2
rT r + rT J(p− pc) + 1

2
(p− pc)T JTJ(p− pc),(3.1)

2In an actual algorithm, the trust region is the current estimate of such a region rather than the
region itself.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3063

where r = r(pc) and J = ∇r(pc).
In the remainder of this section, we analyze three well-known approaches to ap-

proximately solve the GN model problem. The methods can be analyzed in terms of
how they approximate the solution of the model problem, or, alternatively, how their
updates are defined exactly by approximations to the model problem. In particular,
the update s computed by each of the three methods can be formally described using
the reduced SVD of J in (3.1) and a diagonal matrix of (nonnegative) filter factors
Ψ. In the following, the dependence of r, J , and mGN(p) on the current iterate pc is
understood. Let the reduced SVD of the m× n current Jacobian J with rank n̂ be

J = UΣV T =

n̂∑
i=1

σiuiv
T
i ,(3.2)

where U ∈ R
m×n̂, Σ ∈ R

n̂×n̂ with ordered, positive, diagonal coefficients, σ1 ≥ σ2 ≥
· · · ≥ σn̂ > 0, and V ∈ R

n̂×n̂. The search direction or solution update for any of the
three methods can be expressed as

sΨ = −
n̂∑

i=1

vi
uTi r

σi
· ψi = −VΨΣ−1UT r,(3.3)

where Ψ = diag(ψ1, . . . , ψn̂). The methods differ only in the definition of these filter
factors ψi, which therefore provide a convenient tool for analysis. Next, we show that
the filter factors ψi for three standard approaches, DGN, LM, and TSVD,3 can be less
effective for the problems we consider in this paper, and we argue that the method we
propose in section 4 follows a more effective strategy for filtering SVD components.
Observe that in terms of sΨ,

mGN(pc + sΨ) =
1

2

m∑
i=n̂+1

(uTi r)
2 +

1

2

n̂∑
i=1

(uTi r)
2(1− ψi)

2.(3.4)

So, the update sΨ leads to a reduction in the GN model of

R(sΨ) = mGN(pc)−mGN(pc + sΨ) =
1

2

n̂∑
i=1

(uTi r)
2ψi(2 − ψi).(3.5)

R(sΨ) gives the estimated reduction of the objective function, a notion that plays an
important role in the trust region method discussed later.

In the following, we discuss each of the methods DGN, LM, and TSVD, noting
the difficulties with each approach as it is applied to a problem with an ill-conditioned
Jacobian, J .

3.1. (Damped) Gauss Newton. Using the reduced SVD of J from (3.2), min-
imizing mGN with respect to p leads to

(3.6) JTJsGN = −JT r ⇒ sGN = −
n̂∑

i=1

vi
uTi r

σi
(ψi = 1 for i = 1, . . . , n̂),

3This refers to a truncated SVD approximation to the Gauss–Newton direction combined with
a trust region approach.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3064 ERIC DE STURLER AND MISHA E. KILMER

where sGN is the Gauss–Newton update. The estimated reduction of the objective
function from (3.5) is

R(sGN) =
1

2

n̂∑
i=1

(uTi r)
2.(3.7)

If J is ill-conditioned, with one or more very small singular values, σi, and the corre-
sponding components, uTi r, are not comparably small, then the Gauss–Newton update
will be large and, in general, outside the trust region. A classical remedy is to use
the damped GN (DGN) method [8], where we replace the update p = pc + sGN by
p = pc+λsGN, and λ satisfies some line search criteria. Hence the ψi in (3.3) for sDGN

are given by ψi = λ, i = 1, . . . , n̂. However, in this case, the Gauss–Newton search
direction is often almost completely determined by the components corresponding to
the smallest singular values, and these lead to the least reliable improvements of the
(possibly highly) nonlinear objective function, as they are likely far outside the trust
region (i.e., the region where the model is reasonably accurate). Typically, a suffi-
ciently small line search parameter leads to an acceptable step, but it likely leads to
disproportionately small components in useful directions corresponding to the large(r)
singular values. Hence, the method may perform poorly, making many small steps;
see also [14]. Moreover, the line search leads to additional function evaluations per
step.

To demonstrate this potential difficulty with DGN, consider the hypothetical
case of an ill-conditioned Jacobian with one very small singular value (σn̂) and com-
ponents uTi r of roughly equal magnitude. The component vn̂(u

T
n̂r)/σn̂ is very large

and (we assume) outside the trust region. For the sake of argument, we assume that

the remainder of the update, s̃GN ≡
∑n̂−1

i=1 vi(u
T
i r)/σi, lies within the trust region.

Replacing sGN by sDGN = λsGN gives

mGN(pc + sDGN) =
1

2

m∑
n̂+1

(uTi r)
2 +

1

2

n̂∑
i=1

(uTj r)
2(1− λ)2 and

R(sDGN) =
1

2

n̂∑
i=1

(uTj r)
2λ(2 − λ).

So, for very small λ, the reduction in mGN is very small. This example illustrates
why in applications like the one we consider here, where function evaluations may be
expensive and the Jacobians are ill-conditioned, DGN is typically not a good approach;
see also section 6 for numerical results.

3.2. Levenberg–Marquardt. The Levenberg–Marquardt (LM) approach re-
places (3.6) with the following problem:

(3.8) (JT J + μI)sLM = −JT r,

which is clearly well-defined for any μ > 0. LM corresponds to (3.1) with JTJ
replaced by JTJ + μI, which can be thought of as regularization. For papers where
LM is applied to the ill-posed problem, we refer the reader to [5, 6, 16, 25]. The
choice of μ controls the step size and corresponds to estimating the appropriate size
of the trust region. To make LM a globally convergent method, typically an update
is analyzed to determine whether the estimated reduction of the objective function is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3065

sufficiently close to the actual reduction, and μ is updated accordingly. Formally, LM
is equivalent to the trust region method,

min
s
mGN(pc + s) subject to ‖s‖2 ≤ δ,(3.9)

where δ is the (current) trust region radius.
Substituting (3.2) into (3.8) and solving for s, we see that the LM solution update

sLM satisfies

sLM = −
n̂∑

i=1

vi
uTi r

σi
ψi, ψi =

σ2
i

σ2
i + μ

.(3.10)

LM works much better for our class of problems than DGN, because it uses
a different filter factor for each singular value component, and the filtering strongly
favors the larger singular values. Yet it suffers from a potential problem in the context
of ill-conditioned Jacobian matrices. Since all damping factors depend on a single
parameter, LM cannot balance for individual components the relative size of |uTi r|
and the reduction of the GN model with the corresponding contribution to the length
of sLM. Given the value for μ, all components with σ2

i near μ or smaller will be
damped significantly irrespective of whether this is required given the value of |uTi r|,
potentially leading to a significantly diminished reduction of the (estimated) objective
function compared with a filter factor ψi close to 1. The use of a single parameter to
determine the filter factors means that singular values that are close have similar filter
factors irrespective of the relative lengths of the corresponding residual components.
Hence, LM cannot sufficiently tune individual filter factors to account for this case.

In short, in the LM method, the components corresponding to the larger singular
values (but typically not the largest few) can be overdamped. Moreover, relatively
large components in the residual corresponding to small singular values are almost
completely ignored (strongly overdamped).

3.3. Modified truncated SVD. A popular approach to dealing with ill-condi-
tioned matrix equations is to use a truncated SVD (TSVD); see [10, 2] in the context
of ill-conditioned Jacobians and [17, Chapter 3 and section 3.5] in the context of
regularization (both are relevant here). A straightforward extension to the current
setting is to modify the TSVD to comply with the trust region constraint. Using the
reduced SVD of J , this amounts to computing the TSVD update as

sTSVD = −
k−1∑
i=1

vi
uTi r

σi
,(3.11)

where k is such that ‖sTSVD‖ ≤ δ but adding −vk(uTk r/σk) would make sTSV D too
long. Since we want the approximate solution to lie on the trust region boundary
when the Gauss–Newton step falls outside the trust region, we include the direction
vk, but scale this direction such that the solution update has length δ:

sMTSVD = sTSVD − vkcu
T
k r

σk
,(3.12)

where c is determined so that ‖sMTSVD‖ = δ. We compare this modified approach
with DGN, LM, and our new method in the numerical results section. In [13], the
GCV method is proposed to compute a cut-off for a TSVD. However, this is in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3066 ERIC DE STURLER AND MISHA E. KILMER

context of the (original) ill-posed problem. In our experiments, k is typically quite
small, i.e., only a few components are included, and hence quite a few directions are
excluded. For the update sMTSVD we have

mGN(sMTSVD) =
1

2

m∑
i=n̂+1

(uTi r)
2 +

1

2
(uTk r)

2(1 − c)2 + 1

2

n̂∑
i=k+1

(uTi r)
2,(3.13)

which corresponds to ψi = 1 (no damping) for i = 1, . . . , k − 1, ψk = c, and ψi = 0
for i = k + 1, . . . , n̂.

Clearly, both the TSVD and MTSVD approaches can suffer from a similar draw-
back as the LM method: components in the residual for which |uTi r| is relatively large
but for which i > k do not contribute to the sum (3.5), and therefore the reduction
at a single step is not nearly as large as it could be. In general, the approach is too
greedy.

4. A more general TSVD trust region approach. The discussion in the
previous section illustrates that we need a method with more flexibility to vary the
filter factors by considering components more or less individually, except for the over-
all step length constraint. We now discuss how to compute an effective choice of filter
factors ψi for the problems of interest to us, yielding an s satisfying (3.3) such that
‖s‖ ≤ δ. The key is to balance the relative importance of the components to mini-
mizing mGN(pc + s) with the contribution of these components to the (length of the)
solution update, which may only be partially related to the presence of noise. Thus,
the choice of the filter factors needs to take the following considerations into account:

1. Emphasize the large singular values as they give a large reduction of the
objective function for a small change in the length of the update s.

2. Avoid adding terms which are less important in the sense that |uTi r| is rela-
tively small, but whose contribution |uTi r|/σi to the length of s would be un-
duly large and put us outside the trust region. Components with |uTi r| larger
than some threshold εGCV (see section 4.2 for how εGCV is automatically de-
termined) are considered critical components; the remaining components are
considered noncritical components.

3. To ensure a sufficient reduction of the (presumably accurate) model (3.1)
and hence of the objective function, give priority to the critical components
and make at least a damped update for each critical component with priority
decreasing with decreasing singular value.

4. Make some (modest) update for noncritical components when there is some
trust left over, especially for those corresponding to large singular values.

5. If the Gauss–Newton step fits inside the current trust region, take the full
Gauss–Newton step.

The remainder of this section is organized as follows. First, we give the algorithm
that implements this strategy for determining a solution update, s. The specifics
of the GCV-like criterion that we use to determine which components are critical is
described in detail in subsection 4.2. In subsection 4.3, we give a globally convergent
optimization algorithm that employs the proposed solution update within the Basic
Trust Region Algorithm (BTR) from [7, p. 116].

4.1. Solution update algorithm. The algorithm first checks if the full Gauss–
Newton step would fit inside the trust region. If this is the case, the Gauss–Newton
step is chosen. If this is not the case, the algorithm computes the truncated SVD of
J (3.2) based on a parameter τ . The parameter τ > 0 serves mainly a theoretical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3067

purpose and can be chosen arbitrarily small. This parameter is discussed in subsec-
tion 5.2; see (5.3) and below. Considering the (reduced) SVD in (3.2), let ĵ be such

that σi ≥ τ for i = 1, . . . , ĵ and σi < τ for i > ĵ. We define Jτ , Uτ , Στ , and Vτ as
follows:

Jτ =

̂j∑
i=1

σiuiv
T
i = UτΣτV

T
τ .(4.1)

The special cases—ĵ = 0, in which all singular values are less than the threshold,
and ĵ = n̂, in which all singular values are larger than or equal to the threshold—
are allowed. Components with index i > ĵ will be ignored in the update (if the

Gauss–Newton step is too large for the trust region); ψi = 0 for i > ĵ.

Next, the algorithm partitions the terms in (3.6) for i = 1, . . . , ĵ into critical
components and noncritical components, according to their relative importance for
reducing mGN (3.1), using a GCV-like condition (described in section 4.2). We use
I to denote the set of indices for critical components and Ic for its complement. To
guarantee a sufficient reduction in all critical components, we divide the trust region
into two parts, trust region 1 (TR1) with radius δ1 < δ, and trust region 2 (TR2) with
radius δ2 ≡ δ. When adding a critical component would make the partial solution
update4 longer than δ1, we add all remaining critical components in an optimal fashion
such as to minimize mGN while remaining inside TR2.

The algorithm considers the update components in order of decreasing singular
value. If adding a component would not make the partial update longer than δ1, it is
added (critical or not). This helps guarantee we use the full Gauss–Newton step when
possible. However, if adding a component would put the (partial) update outside TR1,
the algorithm proceeds in one of the following two ways. If the component is critical,
the algorithm adds to the (partial) update a combined step in all remaining critical
components (including the current one) that minimizes mGN while keeping the length
of the update less than or equal to δ2. If the component is not critical, we skip it, but
we keep track of the largest such component for possible (scaled) inclusion in the final

update. Once all ĵ indices have been visited, we consider the remaining noncritical
components. If the (partial) update does not fully exploit TR2 (the full trust region),
we first add the largest noncritical component that has not been added yet (scaled if
necessary) to the update. Finally, if any trust remains (we still have not reached the
border of TR2), we add the remaining noncritical components in order of decreasing
singular value. This leads to our solution update algorithm, Algorithm SU.

Algorithm SU (Input: SVD threshold: τ (5.4); reduced SVD of current J : U , Σ, V
(3.2); trust region radius: δ; current residual: r; Output: trial update s;)

Compute update coefficients tk = uT
k r/σk for k = 1, . . . , n̂;

if
∑n̂

k=1 t
2
k ≤ δ2, { Gauss–Newton update fits inside trust region }

do full Gauss–Newton update; ψk = 1 for k = 1, . . . , n̂;
else

discard components uk, σk, vk where σk < τ ; { work with Jτ = UτΣτV
T
τ }

δ1 = νcritδ; δ2 = δ; { we use νcrit = 0.75; experimentation may lead to better values }
[I, Ic] = GCV(Uτ ,Στ ,Vτ ,r); { see section 4.2 GCV Partitioning }
s = 0; cmax = 0; cnt = 0; for k = 1, . . . , n̂, ψk = 0; end

4The term partial solution update refers to the estimate of sΨ in (3.3) before all ̂j components
have been visited.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3068 ERIC DE STURLER AND MISHA E. KILMER

for k = 1, . . . , ĵ,
if kth component not already included in partial update,

if ‖s− tkvk‖ ≤ δ1 and tk �= 0, { update in TR1, so add component whether
critical or not }

s = s− tkvk; ψk = 1; mark component k as included (add to index set J1)
else

if k ∈ I, { update outside TR1, but component is critical }
γ = (δ22 − ‖s‖2)1/2; { distance to boundary TR2 }
J2 = {j ≥ k, j ∈ I}; { index set of remaining critical components }
compute optimal ψj for all j ∈ J2 { LM step for remaining

critical components - see Optimal ψj below }
for all j ∈ J2,

s = s− vj
uT
j r

σj
ψj ; mark component j as included in update

(add to index set J1)
end { for all }

else { update outside TR1 and component is not critical }
cnt=cnt+1; { save info on most important noncritical component }
if |uT

k r| > cmax, cmax = |uT
k r|; kmax = k; tkmax = tk; end

end { if component critical }
end { if update in TR1 }

end { if component not already included }
end { for }
if cnt > 0, { some updates skipped }

γ = (δ22 − ‖s‖2)1/2; { distance to boundary TR2 }
if γ > 0, { consider adding the most important of noncritical components }

ψkmax = min(γ/tkmax , 1); s = s− ψkmax tkmaxvkmax ;
mark component kmax as included (add to index set J1)

end
if trust left,

add skipped, noncritical components in order of decreasing singular value
taking the minimum of tk and distance to boundary of TR2

end { if noncritical components skipped }
end { if Gauss–Newton update fits }

Optimal ψj. The optimal filter factors, ψj , for all j ∈ J2 (see above) are
computed such that we minimize the GN model, mGN , over the remaining criti-
cal components within the remaining length γ. If the algorithm reaches this step,

s = −∑i∈J1

uT
i r
σi
vi has already been computed for all i ∈ J1, the indices of included

components.5 We wish to update s so that it has the form

s = −
∑
i∈J1

uTi r

σi
vi −

∑
i∈J2

ψi
uTi r

σi
vi,(4.2)

where J2, defined above, denotes the set of remaining critical indices. The algorithm
first checks whether damping is needed. If s in (4.2) with ψi = 1 for all i ∈ J2 is
inside the trust region TR2, no damping is done. If s is outside TR2, ‖s‖2 > δ2, we
compute filter factors corresponding to J2 that minimize mGN over the distance to
the boundary of TR2. This is essentially an LM step, except that we use the distance

5Note that ψi = 1 for these components.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3069

to the boundary, γ, in place of the trust region radius. Hence

ψi =
σ2
i

σ2
i + μ

, i ∈ J2,(4.3)

where μ satisfies

γ2 −
∑
i∈J2

ψ2
i

(uTi r)
2

σ2
i

= γ2 −
∑
i∈J2

σ2
i (u

T
i r)

2

(σ2
i + μ)2

= 0.(4.4)

We solve the latter equation using MATLAB’s fzero routine. Note that it is easy to
find a bracket for this zero.

4.2. GCV partitioning. Although we aim to emphasize the solution compo-
nents associated with the largest singular values, we also need to enforce a sufficient
reduction of the local model. Hence, we must ensure that large components (called
critical here) of the residual along the left singular vectors ui are taken into account.
We determine the critical components with a GCV-like condition [11, 12]. Just as the
GCV functional determines the regularization parameter by minimizing the “errors”
introduced by leaving out a particular measurement [11], our GCV-like functional de-
termines a discrete parameter εGCV that minimizes the residual of the Gauss–Newton
solution relative to the number of SVD components included in the approximate Ja-
cobian (see below). Intuitively, this provides a modest number of components that
captures a large part of the residual component in Range(Jτ). As described in the
previous section, critical components are guaranteed a partial correction.

Given the least squares problem Jτs ≈ −r (where Jτ = UτΣτV
T
τ), the GCV

functional [11, 12] is given by

G(ε) =
||Jτsε + r||2

m trace(I − JτJ†
ε)
,

where ε is the cut-off value that defines the matrix J†
ε ,

J†
ε ≡

∑
i:|uT

i r|>ε

σ−1
i viu

T
i ,

in terms of the SVD of Jτ introduced in (4.1), so σi ≥ τ , and sε = J†
ε (−r).

We use the GCV functional to balance the relative importance of components to
minimizing mGN(pc + s) with the contribution of these components to the solution
update, which may only be partially related to the presence of noise. As proposed
in [21], we use the values |uTi r| sorted in descending order as the discrete set of
parameters εi.

The value εGCV = argminiG(εi) determines our partitioning for the current Ja-
cobian and residual vector: the indices i, for which |uTi r| > εGCV, belong to the set
of critical indices I. We note that the GCV condition is used only as a first step in
partitioning the indices. As our optimization problem is regularized by parametric
level sets, we are using the GCV as a convenient tool for a purpose other than its
usual application. Unlike traditional TSVD regularization for linear, discrete, ill-posed
problems, which would preclude terms below the GCV threshold from the solution
(see, e.g., [13]), our algorithm may include some terms corresponding to noncritical
indices. This allows noncritical components with large singular values (accurate re-
duction at a small increase in the length of the solution update) to be included and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3070 ERIC DE STURLER AND MISHA E. KILMER

provides robustness if the GCV curve does not have a well-defined minimum (i.e., the
curve is flat).

We provide a brief example of how this approach improves upon (M)TSVD in
section 6.1.

4.3. Trust region algorithm. We combine the Basic Trust Region Algorithm
from [7] with Algorithm SU (above) to construct a globally convergent optimization
algorithm for solving (1.2). We call the resulting algorithm TREGS (pronounced as
the dinosaur abbreviation T. Rex, indicating that our algorithm has “teeth”), for
Trust region algorithm with REGularized model Solution. The global convergence
proof is given in the next section. Our algorithm avoids unnecessary function and
Jacobian evaluations. In addition, following [8], we reduce the number of Jacobian
evaluations and reduced SVD computations by doubling the trust region and trying
a larger step from the current solution iterate after a very successful step (ρ ≥ η2; see
below). We provide the pseudocode for our algorithm below. The Boolean variable
newSVD is set to 1 when the SVD of the Jacobian should be calculated and to 0
otherwise. The Boolean variable newJAC is set to 1 when a new Jacobian needs to be
calculated and to 0 otherwise. The last Boolean variable doublestep is set to 1 when
the algorithm doubles the size of the trust region and tries a larger step at the same
solution iterate. If doublestep = 1 and the new, larger, step fails, we accept the
previous, smaller, step from the same current iterate. As noted in [7], the parameters
η1, η2, γ1, and γ2 must satisfy the following relations:

0 < η1 ≤ η2 < 1,

0 < γ1 ≤ γ2 < 1.

We use the default values suggested in [7, p. 117], η1 = 0.01, η2 = 0.9, and γ1 = γ2 =
0.5. Experimenting with these parameters may yield better results, but we have not
done so for this paper.

Algorithm: TREGS
Choose initial approximate solution pc; rc = r(pc); Fc = F (pc); mc = Fc; Jc = J(pc)
Choose starting δ
newSVD=1; newJAC=0; doublestep=0;
while not converged,

if newSVD, [U, S, V] = red svd(Jc); newSVD = 0; end
compute trial solution update s using Algorithm SU with

input rc, U , Σ, V , τ , and δ
compute trial solution pt = pc + s, rt = r(pt), Ft = F (pt)
use SU output to compute (efficiently) mt = mGN(pt) from (3.1)
ρ = (Fc − Ft)/(mc −mt)
if ρ ≥ η2 and s is not a Gauss–Newton step, { very successful step }

double trust region, δ = 2δ, but continue to use pc, Fc, SVD of Jc, rc
save current trial solution values { in case larger step fails }
doublestep = 1;

elseif η1 ≤ ρ < η2 { successful step }
accept the trial solution: pc = pt; Fc = Ft, rc = rt
newSVD=1; newJAC=1;

elseif ρ < η1 { unsuccessful step }
reject the trial solution and reduce trust region: δ = γ1δ
if doublestep,

set pc, Jc, rc, Fc to saved trial solution values
newSVD=1; newJAC=1;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3071

else
newJAC=0; newSVD=0;

end
elseif ρ ≥ η2 and s is the Gauss–Newton step, { no need to try a larger step }

accept trial solution: pc = pt; Fc = Ft; rc = rt;
newJAC=1; newSVD=1;

end
if newJAC,

Jc = J(pc);
newJAC=0;

end
end { while }

5. Theory. The major result in this section is a proof of global convergence to
a first-order critical point for our algorithm. The convergence proof is irrespective
of the noise that may or may not be present in the data, and therefore is valid
for nonlinear problems in general. Therefore, our algorithm is robust and is likely
advantageous for other nonlinear problems with ill-conditioned Jacobians, as long as
the Jacobian can be computed at reasonable cost and is not too large (as is the case
for our problem). Therefore, to make the proof generally applicable, we do not use
the discrepancy principle in our proof. Application of the discrepancy principle is
useful for the DOT problem to avoid wasting effort resolving the noise, and we will
use it in the experiments reported in section 6, but it may not be a useful stopping
criterion in a general problem.

The proof involves showing that the proposed algorithm satisfies a set of sufficient
conditions for global convergence given in [7]. In addition, this involves proving that
the objective function to be minimized satisfies a set of sufficient conditions from
[7]. We prove this result for the forward model in section 2.2; for the PDE-based
problem described in section 2.3 the latter step is too involved for the present paper.
Moreover, the main issue for this paper is that the algorithm itself satisfies the required
conditions for convergence, so that it is robust for more general problems.

We start by showing that the objective function, F (p), under the parametric
DOT representation and given the forward model in section 2.2 possesses the required
properties for global convergence.

5.1. Properties of the parametric imaging model. For simplicity, we con-
sider the case where we optimize only for diffusion.

Lemma 5.1. When solving for a diffusion anomaly on a known background us-
ing the forward model (2.3) with the assumptions given in section 2.2, F (p) is twice
continuously differentiable and F (p) ≥ 0.

Proof. The first property follows immediately from standard calculus applied
to the objective function, and the second property follows from the fact F (p) =
(1/2) r(p)T r(p).

Lemma 5.2. The Jacobian matrix corresponding to (2.3) is bounded in norm.
Proof. Let the parameter vector p = [c;α(d)] have T components with the last

component being α(d) and the first T − 1 components being the coefficients of the
polynomial as described in section 2.1. The ith component of the residual, ri, satisfies

ri =
∑n

j=1Aijfj − yi, where fj = ν tanh(α(d))
2 (1 + tanh(−βP (j, :)c)) (note γd = 0),

P ∈ R
n×(T−1) contains the values of the monomials over the grid, and c is the vector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3072 ERIC DE STURLER AND MISHA E. KILMER

of (polynomial) coefficients. Hence,

∂fj
∂pk

=

⎧⎨⎩ −
ν tanh(α(d))

2 βP (j, k)sech2(−βP (j, :)c) for 1 ≤ k ≤ T − 1,

νsech2
(α(d))

2 (1 + tanh(−βP (j, :)c)) for k = T.

Because the functions sech2(x) and tanh(x) are bounded, and since ∂ri
∂pk

=
∑n

j=1 Aij
∂fj
∂pk

,

it follows that ‖J‖2 is bounded independent of α(d) and the entries in c.
Lemma 5.3. The Hessian matrix H(p) for (2.3) is bounded in the 2-norm inde-

pendent of p.
Proof. The proof follows from writing H = JT J + S, using the boundedness

of J , and showing that the coefficients of S, too, involve only bounded hyperbolic
trigonometric functions and values independent of α(d) and the entries in c. The
details are straightforward but tedious, and hence they are omitted here.

5.2. Global convergence. Next, we show that our algorithm for computing a
trial solution update combined with the trust region algorithm produces a nonlinear
least squares solver that converges globally to a first order critical point. Our trust
region algorithm follows the Basic Trust Region Algorithm (BTR) in [7]. So, if we
show that our algorithm satisfies the requirements for convergence of BTR (see below),
the convergence proof in [7] applies.

We have three requirements on the objective function F (p) that are sufficient to
apply the convergence proof in [7]:

RQ 1: F is twice continuously differentiable.
RQ 2: F is bounded from below.
RQ 3: ‖∇ppF‖ (the norm of the Hessian of F) is bounded from above.

These three requirements, properties of the objective function, have been shown in
the previous subsection.

In addition, the convergence theory in [7] makes the following four requirements
on the local model mGN(p) (at iteration k). Note that our model is just the GN model
at iteration k; see (3.1). We give the requirements in terms of (3.1):

RQ 4: mGN(p) is twice differentiable on the trust region.
RQ 5: mGN(pc) = F (pc).
RQ 6: ∇pmGN(pc) = J(pc)

T r(pc) = ∇pF (pc).
RQ 7: ‖∇ppmGN(p)‖ = ‖J(pc)T J(pc)‖ is bounded at every step k by a constant

(independent of k).
It follows from the definitions in section 2 that the residual r(p) is always well-defined
and bounded. In the previous subsection, we have shown that J(p) is well-defined
and bounded (in the 2-norm) for all p. Hence, requirements RQ 4, RQ 5, and RQ 6
follow immediately from the definition of the GN model. Observe that ∇ppmGN (p) =
J(pc)

TJ(pc) (independent of p), and this matrix is well-defined at every iteration and
bounded based on the properties of F discussed in the previous subsection. Hence,
requirement RQ 7 is satisfied.

The final requirement that our algorithm must satisfy in order to directly apply
the BTR convergence theory to our algorithm states that, for all iterations k, the trial
solution update s must satisfy

mGN(pc)−mGN(pc + s) ≥ κ(mGN(pc)−mGN(p
M)),(5.1)

where κ ∈ (0, 1] is a constant (over all k) and pM is the minimizer of model mGN over
the trust region, the GN model at the kth approximate solution, pc. In the notation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3073

introduced in (3.1)–(3.5), we must have

R(sTREGS) ≥ κ(mGN(pc)−mGN(p
M)),(5.2)

where sTREGS denotes the step produced by Algorithm SU at iteration k. In other
words, the improvement obtained in our proposed solution update must be a fixed
fraction (for all steps) of that obtained by the model minimizer (over the trust region).
Since we use the GN model, the LM solution is the model minimizer over the trust
region (coinciding with the Gauss–Newton solution if it lies inside the trust region).
Hence, if the Gauss–Newton update is outside the trust region, we must compare with
the improvement obtained by the LM update. If the Gauss–Newton step fits inside
the trust region, Algorithm SU takes the full Gauss–Newton step for J(pc), which
is obviously the model minimizer in this case, and so (5.2) will hold. Hence, in the
remainder of this section we tacitly assume that the Gauss–Newton step does not fit
inside the trust region, and we must show the following:

(RQ 8) R(sTREGS) ≥ κR(sLM)

for a fixed κ over all iterations, as long as the optimization has not converged.
The remainder of this section is devoted to proving that (RQ 8) is satisfied for

the update sTREGS computed in Algorithm SU, assuming that the optimization has
not converged, that is, ‖∇F (pc)‖2 > εg (gradient tolerance). Note that given the
background of our optimization problem, we will use the discrepancy principle as an
additional convergence criterion, but it plays no role in the convergence proof.

The proof of (RQ 8) proceeds in two stages. First, we establish the inequality
R(s̃LM) ≥ κ1R(sLM), where s̃LM is the LM solution with Jτ replacing J . Second, we
show there exists κ̃ such that R(sTREGS) ≥ κ̃R(s̃LM). Together, these two results
prove (RQ 8).The second inequality must be proved by considering several special
cases regarding the execution of Algorithm SU.

We assume that an appropriate tolerance, εg, is given such that the optimization
can stop if ‖∇F (pc)‖2 ≤ εg. Given an initial solution p0, we define F0 = F (p0) and
r0 = r(p0) according to (1.2). Next, we must choose the cut-off parameter τ for the
truncated SVD of J (4.1),6 such that

0 < τ <
εg√
2F0

.(5.3)

For convenience, we will use for our proofs

τ =
εg√
4F0

;(5.4)

our choice for numerical experiments is given in section 6. Next, we define the τ -
truncated SVD of J , Jτ , and ĵ as in (4.1). The special cases—ĵ = 0, in which all

singular values are less than the threshold, and ĵ = n̂, in which all singular values
are larger than or equal to the threshold—are allowed. We define σ+ = supp ‖J(p)‖2.
Lemma 5.2 guarantees that a finite σ+ always exists.

Clearly, we cannot make an optimization step using Jτ if ĵ = 0. However, the
following lemma shows that in that case we have converged.

Lemma 5.4. Let εg, τ , and J be defined as above, and let σ1 = ‖J‖2 < τ . Then
‖∇F‖2 < εg.

6The parameter τ > 0 serves mainly a theoretical purpose and can be chosen arbitrarily small.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3074 ERIC DE STURLER AND MISHA E. KILMER

Proof. Since ∇F = JT r = V ΣUT r and σ1 < τ , we have

‖∇F‖2 =
(

n̂∑
i=1

σ2
i (u

T
i r)

2

)1/2

≤ σ1
(

n̂∑
i=1

(uTi r)
2

)1/2

< τ

(
n̂∑

i=1

(uTi r)
2

)1/2

≤ τ‖r‖2.

Since the overall algorithm leads to strictly decreasing residuals (the model minimizer
must reduce the objective function unless the gradient is zero; see [7]), we also have
‖∇F‖2 < τ‖r0‖2 = τ

√
2F (p0) < εg, where r0 is the initial (nonlinear) residual.

Hence, the optimization has converged.
In the following, assume that the optimization algorithm has not yet converged;

hence, σ1 ≥ τ and Jτ �= 0. Let s̃LM be the LM update for Jτ . The following lemma
provides a lower bound on the ratio R(s̃LM)/R(sLM).

Lemma 5.5. Let κ1 =
ε2g

4F0σ2
+

and ‖∇F‖2 > εg. Then R(s̃LM) ≥ κ1R(sLM).

Proof. We have from (3.5)

R(sLM) =
1

2

n̂∑
i=1

(uTi r)
2ψi(2− ψi),(5.5)

R(s̃LM) =
1

2

̂j∑
i=1

(uTi r)
2ψ̃i(2− ψ̃i),(5.6)

where the ψ̃i = σ2
i /(σ

2
i + μ̃) denote the filter coefficients corresponding to s̃LM with

μ̃ defined as follows. The LM parameters μ and μ̃ are defined by

n̂∑
i=1

(
uTi r

σi

)2

ψ2
i =

n̂∑
i=1

(
uTi r

σi

)2(
σ2
i

σ2
i + μ

)2

= δ2.(5.7)

̂j∑
i=1

(
uTi r

σi

)2

ψ̃2
i =

̂j∑
i=1

(
uTi r

σi

)2(
σ2
i

σ2
i + μ̃

)2

≤ δ2,(5.8)

where inequality holds in the latter equation only if μ̃ = 0, and hence ψ̃i = 1 for

i = 1, . . . , ĵ. In this case s̃LM =
∑

̂j
i=1 vi(u

T
i r/σi) is also the Gauss–Newton update

for Jτ . Obviously, we always have μ̃ ≤ μ, and hence ψ̃i ≥ ψi, which in turn implies
that ψ̃i(2− ψ̃i) ≥ ψi(2 − ψi) (for ψ̃i, ψi ∈ (0, 1] and i = 1, . . . , ĵ). Define

η =

n̂∑
i=1

(uTi r)
2 and ητ =

̂j∑
i=1

(uTi r)
2.

We complete the proof by contradiction. Assume that R(s̃LM) < κ1R(sLM), that is,

̂j∑
i=1

(uTi r)
2ψ̃i(2− ψ̃i) < κ1

̂j∑
i=1

(uTi r)
2ψi(2− ψi) + κ1

n̂∑
i=̂j+1

(uTi r)
2ψi(2− ψi).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3075

From
∑

̂j
i=1(u

T
i r)

2ψi(2 − ψi) ≤
∑

̂j
i=1(u

T
i r)

2ψ̃i(2 − ψ̃i) and the inequality above, we
derive

̂j∑
i=1

(uTi r)
2ψi(2 − ψi) < κ1

̂j∑
i=1

(uTi r)
2ψi(2− ψi) + κ1

n̂∑
i=̂j+1

(uTi r)
2ψi(2 − ψi) ⇔

(1− κ1)
̂j∑

i=1

(uTi r)
2ψi(2− ψi) < κ1

n̂∑
i=̂j+1

(uTi r)
2ψi(2− ψi) ⇒

(1− κ1)ψ̂j+1(2− ψ̂j+1)

̂j∑
i=1

(uTi r)
2 < κ1ψ̂j+1(2− ψ̂j+1)

n̂∑
i=̂j+1

(uTi r)
2 ⇔

(1− κ1)η2τ < κ1(η
2 − η2τ) ⇔

η2τ < κ1η
2.

(5.9)

Moreover,

‖∇F‖22 =

n̂∑
i=1

(uTi r)
2σ2

i =

̂j∑
i=1

(uTi r)
2σ2

i +

n̂∑
i=̂j+1

(uTi r)
2σ2

i

< σ2
+

̂j∑
i=1

(uTi r)
2 + τ2

n̂∑
i=̂j+1

(uTi r)
2 = σ2

+η
2
τ + τ2(η2 − η2τ) (and using (5.9))

< σ2
+κ1η

2 + τ2η2

< (σ2
+κ1 + τ2)‖r‖22

< (σ2
+κ1 + τ2)2F0 = ε2g.

Hence, R(s̃LM)/R(sLM) < κ1 ⇒ ‖∇F‖2 < εg. Since by assumption ‖∇F‖2 > εg, we
must have R(s̃LM) ≥ κ1R(sLM). Finally, note that σ+, F0, and εg are constant over
all the nonlinear iterations.

Next, we show that R(sTREGS) ≥ κ̃R(s̃LM) for some κ̃ > 0 independent of the
iteration, assuming the method has not converged.

Recall that Algorithm SU uses two trust region radii, the full trust region (TR2)
with radius δ and the smaller trust region (TR1) with radius νcritδ, where νcrit ∈ (0, 1).
First, we deal with the case that the Gauss–Newton step for Jτ fits inside TR2, that
is, s̃LM is the Gauss–Newton step for Jτ .

Lemma 5.6. Let s̃LM be the Gauss–Newton step for Jτ . Then R(sTREGS) =
κ2R(s̃LM) with κ2 = 1.

Proof. Algorithm SU produces the Gauss–Newton iterate for Jτ if this update
fits inside TR2. Therefore, sTREGS = s̃LM, and R(sTREGS) = R(s̃LM).

The next two lemmas deal with the case that the Gauss–Newton update for Jτ
does not fit inside the trust region TR2, so μ̃ > 0. Let I be the set of critical indices;
cf. section 4.1. We must consider two cases, I �= ∅ and I = ∅. We consider the case
I �= ∅ first.

Lemma 5.7. Let I �= ∅ and μ̃ > 0. Then there exists κ3 such that R(sTREGS) ≥
κ3R(s̃LM).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3076 ERIC DE STURLER AND MISHA E. KILMER

Proof. The filter factors for sTREGS will be denoted by ψ̂i for i = 1, . . . , ĵ. We
can prove the required result in a straightforward fashion by introducing two judi-
ciously chosen LM updates with filter factors ϕi and ϕ̃i and LM parameters λ and
λ̃, respectively, such that ϕi ≥ ϕ̃i ≥ αψ̃i for i = 1, . . . , ĵ, where the ψ̃i are the filter
factors for the LM step with Jτ and trust region radius δ introduced above, and α is
a constant (over all nonlinear iterations) to be determined. Subsequently, we prove

that ψ̂i ≥ ϕi ≥ αψ̃i for all i ∈ I.
Let the ϕi = σ2

i /(σ
2
i + λ) be the filter factors for an LM step for Jτ with trust

region radius (1 − ν2crit)1/2δ, the minimum remaining distance for the update when
TR1 will be exceeded. So, λ satisfies

̂j∑
i=1

(
uTi r

σi

)2(
σ2
i

σ2
i + λ

)2

= (1− ν2crit)δ2.(5.10)

Let the ϕ̃i = σ2
i /(σ

2
i + λ̃) be the filter factors for an LM step for Jτ with parameter

λ̃ = (γ − 1)σ2
+ + γμ̃ with γ = (1 − ν2crit)−1/2. First, we show that ϕi ≥ ϕ̃i ≥ αψ̃i for

i = 1, . . . , ĵ. We have

ψ̃i

ϕ̃i
=

σ2
i

σ2
i + μ̃

· σ
2
i + γμ̃+ (γ − 1)σ2

+

σ2
i

=
σ2
i + γμ̃+ (γ − 1)σ2

+

σ2
i + μ̃

=
σ2
i + μ̃+ (γ − 1)(σ2

+ + μ̃)

σ2
i + μ̃

= 1 + (γ − 1)
σ2
+ + μ̃

σ2
i + μ̃

.

Since τ ≤ σi ≤ σ+, we get

1 + (γ − 1)
σ2
+ + μ̃

σ2
i + μ̃

≥ 1 + (γ − 1)
σ2
+ + μ̃

σ2
+ + μ̃

= γ and hence

γ ≤ ψ̃i

ϕ̃i
≤ 1 + (γ − 1)

σ2
+ + μ̃

τ2 + μ̃
< 1 + (γ − 1)

σ2
+

τ2
.(5.11)

The left inequality implies ϕ̃i ≤ (1− ν2crit)1/2ψ̃i, which gives

̂j∑
i=1

(
uTi r

σi

)2

ϕ̃2
i ≤

̂j∑
i=1

(
uTi r

σi

)2

(1− ν2crit)ψ̃2
i = (1− ν2crit)δ2.

This, in turn, gives λ ≤ λ̃ and hence ϕi ≥ ϕ̃i. The right inequality in (5.11) implies

ϕ̃i ≥ αψ̃i with α = (1 + (γ − 1)
σ2
+

τ2)
−1.

Note that, by Algorithm SU, the remaining distance in the trust region for the
update is at least (1 − ν2crit)

1/2δ. Moreover, some critical components may have

already been added to the update (with ψ̂i = 1), so that the length of (1− ν2crit)1/2δ,
or more, is only for the remaining critical components. Hence, ψ̂i ≥ ϕi for i ∈ I, so

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3077

ψ̂i ≥ ϕi ≥ ϕ̃i ≥ αψ̃i for i ∈ I. Therefore,
R(sTREGS)

R(s̃LM)
≥
∑

i∈I(u
T
i r)

2ψ̂i(2− ψ̂i)∑
̂j
i=1(u

T
i r)

2ψ̃i(2− ψ̃i)
≥
∑

i∈I(u
T
i r)

2αψ̃i(2− αψ̃i)∑
̂j
i=1(u

T
i r)

2ψ̃i(2− ψ̃i)

≥ α
∑

i∈I(u
T
i r)

2ψ̃i(2− ψ̃i)∑
̂j
i=1(u

T
i r)

2ψ̃i(2− ψ̃i)
=

α
∑

i∈I(u
T
i r)

2ψ̃i(2− ψ̃i)∑
i∈I(u

T
i r)

2ψ̃i(2− ψ̃i) +
∑

i∈Ic
(uTi r)

2ψ̃i(2 − ψ̃i)

= α

(
1 +

∑
i∈Ic

(uTi r)
2ψ̃i(2− ψ̃i)∑

i∈I(u
T
i r)

2ψ̃i(2− ψ̃i)

)−1

≥ α
(
1 +

ψ̃+(2 − ψ̃+)
∑

i∈Ic
(uTi r)

2

ψ̃τ (2− ψ̃τ)
∑

i∈I(u
T
i r)

2

)−1

,

where ψ̃+ = σ2
+/(σ

2
+ + μ̃) and ψ̃τ = τ2/(τ2 + μ̃). In addition, |uTi r| ≤ εGCV for

i ∈ Ic and |uTi r| > εGCV for i ∈ I. Let � = |I|, the number of elements in I. Then

|Ic| = ĵ − �. By assumption we have I �= ∅, and hence � ≥ 1. Therefore,

R(sTREGS)

R(s̃LM)
≥ α

(
1 +

ψ̃+(2− ψ̃+)
∑

i∈Ic
(uTi r)

2

ψ̃τ (2 − ψ̃τ)
∑

i∈I(u
T
i r)

2

)−1

≥ α
(
1 +

ψ̃+(2− ψ̃+)(ĵ − �)ε2GCV

ψ̃τ (2 − ψ̃τ)�ε2GCV

)−1

≥ α
(
1 +

ψ̃+(2− ψ̃+)(ĵ − 1)

ψ̃τ (2− ψ̃τ)

)−1

≥ α
(
1 + (ĵ − 1)

2σ2
+

τ2

)−1

≥ α
(
1 + (n− 1)

2σ2
+

τ2

)−1

.(5.12)

The two last steps follow from

ψ̃+(2− ψ̃+)

ψ̃τ (2− ψ̃τ)
=

(τ2 + μ̃)2σ2
+(σ

2
+ + 2μ̃)

(σ2
+ + μ̃)2τ2(τ2 + 2μ̃)

=
σ2
+

τ2
· τ

2 + μ̃

τ2 + 2μ̃
· σ

2
+ + 2μ̃

σ2
+ + μ̃

· τ
2 + μ̃

σ2
+ + μ̃

≤ 2
σ2
+

τ2
,(5.13)

and ĵ ≤ n̂ ≤ n. Note that although εGCV changes from one optimization step to the
next, an appropriate value εGCV exists at every optimization step, and no assumption
is made on the cut-off index ĵ. So, the bound R(sTREGS) ≥ κ3R(s̃LM) holds indepen-

dent of iteration with κ3 = α
(
1 + 2(n− 1)σ2

+/τ
2
)−1

(note that α, n, σ+, and τ are
all constant over the nonlinear iterations).

Next, we consider the second case.
Lemma 5.8. Let I = ∅. Then there exists a κ4 > 0, independent of iteration,

such that R(sTREGS) ≥ κ4R(s̃LM).
Proof. In phase I of the algorithm, some components might be added if the

updates fit inside TR1. Since we assume the Gauss–Newton update does not fit inside
TR2 (the larger trust region), not all components are added. We use the remainder of
TR2, which is at least (1 − ν2crit)1/2δ, first for the maximum component, maxi |uTi r|,
with index m, unless it has been added already, and possibly for other remaining
components. If the component with max |uTi r| has been added in phase I or if the

update fits within TR2, we have ψ̂m = 1. Otherwise, the component fills the remaining
distance to the boundary of TR2, and we have 1 > ψ̂m ≥ σm

|uT
mr|(1− ν2crit)1/2δ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3078 ERIC DE STURLER AND MISHA E. KILMER

If ψ̂m = 1, then

R(sTREGS)

R(s̃LM)
≥ (uTmr)

2∑
̂j
i=1(u

T
i r)

2ψ̃i(2− ψ̃i)
≥ (uTmr)

2∑
̂j
i=1(u

T
mr)

2ψ̃i(2− ψ̃i)

=
1∑

̂j
i=1 ψ̃i(2− ψ̃i)

≥ 1

ĵ
≥ 1

n
.(5.14)

If 1 > ψ̂m ≥ σm

|uT
mr|(1 − ν2)1/2δ, then

R(sTREGS)

R(s̃LM)
≥ (uTmr)

2ψ̂m(2 − ψ̂m)∑
̂j
i=1(u

T
i r)

2ψ̃i(2− ψ̃i)
≥ (uTmr)

2ψ̂m(2− ψ̂m)∑
̂j
i=1(u

T
mr)

2ψ̃i(2− ψ̃i)

=
ψ̂m(2 − ψ̂m)∑
̂j
i=1 ψ̃i(2− ψ̃i)

≥ ψ̂m(2− ψ̂m)

ĵψ̃+(2− ψ̃+)
.(5.15)

Next we show that ψ̂m ≥ (1−ν2crit)1/2ψ̃τ , and therefore ψ̂m(2−ψ̂m) ≥ (1−ν2crit)1/2ψ̃τ (2−
(1− ν2crit)1/2ψ̃τ). Using (5.8) with equality (and μ̃ > 0), since we assume the Gauss–

Newton update does not fit inside TR2, and ψ̃τ ≤ ψ̃i for i = 1, . . . , ĵ, we have

̂j∑
i=1

(
uTi r

σi

)2

ψ̃2
τ ≤ δ2,

whereas

̂j∑
i=1

(
uTi r

σi

)2

ψ̂2
m ≥

̂j∑
i=1

(
uTi r

σi

)2(
σm
|uTmr|

)2

(1− ν2crit)δ2 =

̂j∑
i=1

(uTi r)
2

(uTmr)
2

σ2
m

σ2
i

(1 − ν2crit)δ2

= (1− ν2crit)δ2
⎛⎝1 +

∑
i�=m

(uTi r)
2

(uTmr)
2

σ2
m

σ2
i

⎞⎠ ≥ (1− ν2crit)δ2.

Hence,

̂j∑
i=1

(
uTi r

σi

)2
ψ̂2
m

1− ν2crit
≥ δ2,

and therefore

ψ̂m

(1− ν2crit)1/2
≥ ψ̃τ ⇔

ψ̂m ≥ (1 − ν2crit)1/2ψ̃τ .(5.16)

From (5.15) and (5.16) we derive

R(sTREGS)

R(s̃LM)
≥ ψ̂m(2− ψ̂m)

ĵψ̃+(2 − ψ̃+)

≥ (1− ν2crit)1/2ψ̃t(2− (1− ν2crit)1/2ψ̃τ)

ĵψ̃+(2 − ψ̃+)
≥ (1− ν2crit)1/2

ĵ

ψ̃t(2− ψ̃τ)

ψ̃+(2− ψ̃+)

≥ (1− ν2crit)1/2
n

τ2

2σ2
+

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3079

The last step follows from (5.13). Finally, we have R(sTREGS) ≥ κ4R(s̃LM) with

κ4 =
(1−ν2

crit)
1/2

n
τ2

2σ2
+

(again, note that all parameters are constant over the nonlinear

iteration).
This brings us to the main result of this subsection.
Theorem 5.9. If the requirements RQ 1–RQ 7 on the objective function and the

local model are satisfied, then there exists a κ > 0, independent of the iteration k,
such that mk(pk)−mk(pk + sk) ≥ κ(mk(pk)−mk(p

M
k)) is satisfied.

Proof. The proof follows from the previous lemmas and taking κ = κ1 min(κ2, κ3,
κ4).

Corollary 5.10. Under the assumptions in the previous theorem, the algorithm
TREGS is guaranteed to converge to a first-order critical point.

Proof. Our algorithm satisfies all the requirements for the BTR algorithm from
[7] to converge to a first-order critical point. For the remainder of the proof we refer
the reader to [7, section 6.4].

6. Numerical results. All numerical results were computed using MATLAB in
double precision arithmetic. We split the numerical results into two subsections: those
dealing with the linear DOT model and those dealing with the nonlinear DOT model.
We present comparisons of our method with the LM and DGN implementations in
MATLAB and with the MTSVD algorithm described in section 3.3.

Our comparisons are in terms of the total number of function evaluations and
Jacobian evaluations until the discrepancy principle, our effective stopping criterion,
is reached or a gradient tolerance is satisfied. A stopping criterion based on the
discrepancy principle is relevant for our DOT problems, because of the presence of
measurement noise. This avoids wasting computational effort trying to resolve the
noise. The gradient tolerance and the related SVD cut-off τ were chosen as follows.
Let εF be the tolerance from the discrepancy principle, given below for each test
problem. Then εg = 10−7εF and τ = 0.1

εg
‖r0‖ . Numbers are reported for various

noise realizations, starting guesses, and configurations of the absorption and diffusion
anomalies. In addition, for one experiment for the nonlinear forward problem, we give
a qualitative assessment of the final image reconstruction of the diffusion image for
both TREGS and LM.

6.1. Linear forward model. We tested our algorithm extensively on four dif-
ferent test problems, varying the starting guesses and the noise realizations, to get
a complete picture of the behavior of our algorithm, TREGS, relative to LM, DGN,
and MTSVD. This extensive testing strongly suggests that the demonstrated improve-
ments by our algorithm are systematic and not the result of a lucky starting guess.
In each of the four test problems, we are inverting jointly for absorption and diffusion
perturbation images. The four test problems differ in the locations and sizes of the
anomalies, as well as the values inside those anomalies. We mimic the setup in [18],
where the goal is to locate anomalies on the cortex of the brain through the use of a
one-to-one mapping from a region in R

2 to the cortical surface. Thus, the 3D imaging
problem becomes inherently 2D. We use polynomials of degree two or less. Therefore,
the total number of unknown parameters is 14: 7 to describe the absorption image
(6 polynomial parameters plus the value inside the anomaly) and 7 to describe the
diffusion image.

In each of the four test problems, the “true” data are created as ytrue = Af (see
section 2.2) using two modulation frequencies and splitting the real and imaginary
components as described. To compute a single noise realization, we first generate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3080 ERIC DE STURLER AND MISHA E. KILMER

Table 6.1

Comparison of our proposed method (TREGS) with LM, DGN, and MTSVD on the first test
problem, for two different starting guesses for each of three noise realizations. The ∗ in the DGN
column means that the method switched over to LM after a few iterations due to poor conditioning
of the gradient. Err1 and Err2 give the relative error in the diffusion and absorption images in the
2-norm (for the image as a vector).

TREGS LM
Config FEV JEV Err1 Err2 FEV JEV Err1 Err2
1,1,NR1 82 45 0.126 0.098 247 56 0.195 0.166
1,1,NR2 25 13 0.071 0.090 224 52 0.125 0.223
1,1,NR3 48 25 0.093 0.067 175 40 0.125 0.165
1,2,NR1 18 11 0.172 0.075 91 21 0.075 0.044
1,2,NR2 23 11 0.223 0.055 74 17 0.075 0.125
1,2,NR3 19 10 0.159 0.119 79 18 0.073 0.035

DGN MTSVD
Config FEV JEV Err1 Err2 FEV JEV Err1 Err2
1,1,NR1 202* 46 0.098 0.090 91 54 0.148 0.064
1,1,NR2 241* 54 0.098 0.218 103 60 0.172 0.083
1,1,NR3 233* 53 0.162 0.131 102 51 0.191 0.100
1,2,NR1 136* 32 0.221 0.116 52 32 0.080 0.036
1,2,NR2 324* 75 0.295 0.146 53 28 0.077 0.039
1,2,NR3 154* 37 0.120 0.116 94 47 0.100 0.039

four noise subvectors using the randn function—each subvector corresponding to the
conformal partitioning in (2.2) for the matrix A in (2.3). Each noise subvector was
then scaled so that the relative noise level (for that subvector) was 1 percent, and
then that noise subvector was added to the corresponding true data subvector. We
generated three different noise realizations according to this method. The scaling
values were saved and used to define the matrix W in order to whiten the data. That
is, we use A ← WA, y ← Wy = W (ytrue + η). Hence, our stopping criterion, based
on the discrepancy principle, was

‖Af − y‖ < tol ≈ ‖Wη‖,
where we used the same value for tol, tol = 10.5, for each noise realization. Of course,
the choice of the tolerance in the stopping criterion can have a slight effect on the qual-
ity of the solution, since a value too small could mean unnecessarily trying to overfit
for noise. However, in our experiments, underestimating a stopping tolerance does not
dramatically affect the quality of the solution, primarily because the regularization is
accomplished through the parameterization itself.

First, in Table 6.1, we compare the performance of LM, DGN, and MTSVD with
our algorithm (TREGS) for the first test problem, two starting guesses, and three
noise realizations. For the first starting guess, the shape was a circle centered at (0,0)
with radius 1 and in the second case it was a circle centered at (0,0) with radius 0.5.
Then we ran 3 optimization steps with the shape parameters fixed and inverted only
for the 2 values inside the anomalies. The first observation from Table 6.1 is that
DGN is not effective in choosing an appropriate search direction. In fact, MATLAB’s
DGN, implemented by the lsqnonlin routine, always switches to LM once it detects
an ill-conditioned gradient and slow progress (indicated by ∗ in Table 6.1).

In our implementation of the MTSVD approach, we used an algorithm from
Dennis and Schnabel [8, Alg A.6.4.5] for updating the model trust region. Jacobian
updates were done only once a step was accepted. As discussed in section 3.3, this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3081

Table 6.2

Comparison of our proposed method, TREGS, to LM for test problems 2–4, for two different
starting guesses for each of three noise realizations. Err1 and Err2 give the relative error in the
diffusion and absorption images in the 2-norm (for the image as a vector).

TREGS LM
Config FEV JEV Err1 Err2 FEV JEV Err1 Err2
2,1,NR1 71 29 0.141 0.024 127 30 0.072 0.027
2,1,NR2 78 35 0.110 0.120 131 31 0.128 0.108
2,1,NR3 132 61 0.187 0.134 121 29 0.123 0.051
2,2,NR1 144 74 0.172 0.058 137 33 0.107 0.050
2,2,NR2 50 25 0.116 0.138 137 33 0.185 0.146
2,2,NR3 46 24 0.196 0.092 125 30 0.123 0.096
3,1,NR1 31 20 0.062 0.040 143 33 0.056 0.015
3,1,NR2 37 23 0.041 0.036 140 32 0.046 0.014
3,1,NR3 29 16 0.076 0.012 138 32 0.051 0.012
3,2,NR1 34 17 0.057 0.034 130 30 0.046 0.023
3,2,NR2 40 20 0.040 0.020 120 28 0.053 0.048
3,2,NR3 43 22 0.051 0.013 112 26 0.042 0.049
4,1,NR1 16 9 0.426 0.268 84 20 0.284 0.219
4,1,NR2 19 10 0.271 0.399 89 21 0.460 0.395
4,1,NR3 29 12 0.392 0.224 41 10 0.253 0.177
4,2,NR1 40 9 0.413 0.250 32 8 0.486 0.329
4,2,NR2 48 8 0.366 0.561 41 10 0.317 0.205
4,2,NR3 43 9 0.365 0.245 41 10 0.240 0.182

approach is still too greedy to perform well on these test problems compared with
TREGS. However, MTSVD is a serious competitor for LM.

Table 6.1 also clearly shows that LM needs significantly more function evaluations
and generally more Jacobian evaluations (though not by a similar factor) than our
proposed method. The behavior of the four methods was, in this respect, consistent
across all experiments. In the interest of space, and as LM is probably the most
common method for these optimization problems, we report only the comparison
of TREGS with LM for the remaining experiments. These results are presented in
Table 6.2. We do report on MTSVD for the nonlinear forward problem in the next
section.

In Figure 6.1, we demonstrate the effectiveness of the GCV-like condition in
TREGS. On the top, for a representative step of TREGS (the second iteration of
“1,1 NR3” in Table 6.1), we plot the magnitude of the residual components along
the left singular vectors versus the rank of the singular values (from large to small).
For the first four components, indicated by the disks, the full length of the correction
(the Gauss–Newton update in the right singular value direction) is included in the
solution update. The full correction in the direction of the fifth component would
put the solution update outside the first trust region, triggering the update of all
remaining critical components, indicated by the triangles. The GCV cut-off is indi-
cated by the dotted line. The components corresponding to the pluses are ignored.
Note that these are not the components corresponding to the smallest singular val-
ues. On the bottom, we plot the magnitude of the components of the solution update
corresponding to the residual components along the left singular vectors. Note that
components 3 to 12 contribute roughly equally to the length of the Gauss–Newton
solution update, but TREGS selects from these the ones that contribute most to the
residual reduction. MTSVD would include the full correction along the first four
components and a damped correction along the fifth component. All other directions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3082 ERIC DE STURLER AND MISHA E. KILMER

2 4 6 8 10 12 14

101

102

1,1,NR3, iter 2; abs(u
i
T r)

index

m
a
g
n
i
t
u
d
e

2 4 6 8 10 12 14
10−5

100

1,1,NR3, iter 2; abs(ui
T r/σi)

index

m
a
g
n
itu

d
e

Fig. 6.1. Comparison of TREGS and MTSVD demonstrating the importance of the GCV-like
condition for a representative step (in “1, 1 NR3”). Top: the magnitude of the residual components
along the left singular vectors versus the rank of the singular values (from large to small) for a
representative step of TREGS. For the disks the full Gauss–Newton correction along the left singular
vectors is included in the solution update. For the triangles a damped Gauss–Newton correction was
made. The components corresponding to the pluses are ignored. Bottom: we plot the magnitude of
the solution update components versus the rank of the singular values. Components 3 to 12 would
contribute roughly equally to the length of the Gauss–Newton update, but TGREGS selects from
these the ones that contribute most to the residual reduction.

would be ignored, which includes multiple directions with large components in the
residual. In the first two optimization steps, the objective function for TREGS goes
from 1.39e5 (initial value of the objective function) to 5.75e4 to 2.69e4, whereas for
MTSVD, the objective function goes from 1.39e5 to 5.92e4 to 3.27e4, reflecting that
MTSVD is less effective in reducing the objective function. If we would apply the
MTSVD to the TREGS solution after one iteration, we would get a model reduction
(3.5) of 4.12e4 versus 4.22e4 for the model reduction that TREGS yields. The cumu-
lative effect of these differences is that TREGS converges in 48 function evaluations
(25 Jacobian evaluations), while MTSVD converges in 102 function evaluations (51

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3083

Jacobian evaluations); see Table 6.1.

6.2. Nonlinear forward model. In this section, we give comparisons for a few
different configurations and noise realizations. Again, we provide extensive test results
to demonstrate that the improvements by our algorithm are systematic and not the
result of a lucky starting guess. In the first three experiments, the region of interest
was 8cm× 8cm× 4cm, discretized with N ×N ×Nz grid points (the actual values are
given below). In the next two experiments, the region of interest was 6cm×6cm×4cm,
discretized with N ×N ×Nz grid points. In all experiments, data were taken at two
frequencies, 0 and 50 MHz (recall that we obtain twice the amount of data at 50 MHz
in the sense that we separate the real and imaginary contributions). Sources and
detectors were located on both the top and the bottom of the box and were assumed
to coincide with grid points for simplicity. In practice, the numbers of sources and
detectors for a fixed region of interest are limited by the cost of the apparatus and
the physics of the problem—that is, the spacing of sources and detectors for a fixed
region of interest is bounded from below independent of the mesh spacing used in the
forward solve.

In all examples, we invert for the parameters of the polynomials describing both
the absorption and the diffusion anomalies, and we invert for the interior parameters.
Thus, the length of the parameter vector was 22, giving a Jacobian that is still quite
tall and skinny. In all experiments, our critical trust region in TREGS is 80 percent of
the actual trust region (δ1 = 0.8δ2 in Algorithm SU). The stopping criterion in each
example was 1.1‖Wη‖, where η is the noise vector. This choice was used to simulate
a 10 percent error in the estimation of the noise level as well as to prevent wasted
effort oversolving for the solution.

The experiments are described in detail below. Note that the experiments in-
clude examples on different grid spacings, with different noise levels, different noise
realizations, and different starting guesses, with the intent of showing the robustness
of our approach. The true absorption and diffusion anomalies were unchanged in ex-
periments 1–3; the anomalies in 4 and 5 were smaller, but the same for each of those
two experiments.

1. Here, N = 21, Nz = 17 on an 8cm × 8cm × 4cm region of interest. There
was a 10× 10 equispaced grid of sources on the top and bottom, and a 9× 9
equispaced grid of detectors on the top and on the bottom. We used ellipses
for the starting guesses for the absorption and diffusion anomalies, and then 4
optimization steps to determine loose estimates of the anomaly values inside
these shapes. The starting shapes were different from each other, and in the
same off-center directions as the actual centers, but larger than the actual
objects. We ran this experiment for 1 percent and 5 percent noise.

2. In this comparison, N = 26, Nz = 17 on the 8cm × 8cm × 4cm region of
interest. We simulated a 12 × 12 equispaced grid of sources on the top and
bottom, and a 12 × 12 equispaced grid of detectors on the top and bottom
(sources and detectors were not co-located). The starting guess was obtained
in the same way as described in experiment 1. We report results for two
different noise realizations, both at 5 percent noise.

3. For this experiment, N = 33, Nz = 17 on the 8cm × 8cm × 4cm region of
interest. We simulated a 16 × 16 equispaced grid of sources on the top and
bottom, and a 15×15 equispaced grid of detectors on the top and bottom. We
used the same starting shapes as in the previous two experiments, but fixed
the starting values for the interior of the diffusion and absorption anomalies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3084 ERIC DE STURLER AND MISHA E. KILMER

Table 6.3

Results for the first three configurations. The NL column indicates the noise level for that
particular experiment. The ∗ indicates the maximum number of function evaluations (75) was
exceeded prior to convergence. Err1 and Err2 give the relative error in the diffusion and absorption
images in the two-norm (for the image as a vector).

TREGS LM MTSVD
Ex NL FEV JEV Err1 Err2 FEV JEV Err1 Err2 FEV JEV Err1 Err2
1 1% 35 11 0.066 0.396 71 17 0.086 0.337 27 12 0.083 0.439
1 5% 29 10 0.280 0.681 26 7 0.345 0.743 * * * *
2 5% 29 14 0.378 0.828 39 10 0.397 0.731 * * * *
2 5% 21 12 0.111 0.411 26 7 0.334 0.701 * * * *
3 10% 24 10 0.315 0.755 28 7 0.463 0.732 12 5 0.344 0.754

at 0.11cm−1 and 0.04cm−1, respectively.
4. Here, the region of interest was 6cm × 6cm × 4cm, with N = 21, Nz = 17.

We use the same source/detector arrangement as in experiment 1, though the
spacing between adjacent sources (detectors) was smaller (6mm). The start-
ing shapes for both absorption and diffusion anomalies were the same, but
chosen as the largest ellipse to fit in the box with axes oriented parallel with
the coordinate axes. The starting internal anomaly values were determined
by 4 optimization steps used to determine loose estimates of the anomaly
values given those large starting shapes. We used 1 percent noise, and ran
this for two different noise realizations.

5. We used the same region of interest as in the previous example, but N =
30, Nz = 17. We also used the same configuration of sources and detectors as
in the previous example, even though the grid resolution is twice as fine in
the x and y directions. Finally, we used the same starting ellipse shapes, but
the starting value for the diffusion coefficient inside the diffusion anomaly was
taken to be 0.12cm−1, and the starting value for the absorption coefficient
inside the absorption anomaly was taken to be 0.04cm−1. We used 5 percent
noise, and ran this for two different noise realizations.

Table 6.3 gives the numerical comparisons for the first three experiments. We
tested our new method (TREGS), LM, and MTSVD. DGN consistently gave poor
results, and the MATLAB implementation, via lsqnonlin, always warned that it
would switch to LM partway through, so we do not report those numbers here. We
included results for MTSVD for the first three experiments, because, for the linear
problem, we observed that MTSVD often was more competitive with TREGS than
LM. Here, however, that only seems to be the case for low noise levels and a reasonable
starting guess. For the first three experiments, for runs at the higher noise levels, LM
is competitive with TREGS in the number of function and Jacobian evaluations.
However, the quality of the solutions is typically worse, indicating that perhaps too
much damping of important directions lead LM away from the desired minimum.

We present comparisons between TREGS and LM for experiments 4 and 5 in
Table 6.4. Recall that the starting guess is further from the solution in these ex-
periments. For these cases, LM had a great deal of trouble—after a few productive
iterations at the beginning, the reduction rate became almost stagnant and resulted
in the triggering the failsafe stopping criterion of 100 function evaluations. This be-
havior was found both at the 1 percent (experiment 4) and 5 percent (experiment 5)
noise levels, for all four noise realizations. In Figure 6.2, for experiment 5, we give
the computed reconstructions of the diffusion image (in translucent blue) for TREGS
and LM compared with the true diffusion image (in orange) as well as the starting

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A REGULARIZED GAUSS–NEWTON TRUST REGION METHOD 3085

Table 6.4

Results for configurations 4 and 5. For configuration 4, both runs were for 1 percent noise at
different noise realizations; for configuration 5, both runs were for 5 percent noise at different noise
realizations. The ∗ means that LM terminated at the first step after the maximum of 100 function
evaluations was reached (so the results are for a nonconverged approximate solution). Err1 and
Err2 give the relative error in the diffusion and absorption images in the two-norm (for the image
as a vector).

TREGS LM
Example FEV JEV Err1 Err2 FEV JEV Err1 Err2
4, NR1 22 12 0.076 0.245 102* 24 0.212 0.532
4, NR2 31 14 0.132 0.539 102* 24 0.272 0.574
5, NR1 20 9 0.276 0.639 102* 24 0.669 0.826
5, NR2 21 9 0.294 0.656 102* 23 0.642 0.828

Fig. 6.2. Illustration corresponding to the last row of Table 6.4. Left: starting shape estimate
for the diffusion anomaly. Middle: final shape estimate for the diffusion anomaly using TREGS.
Right: final shape estimate for the diffusion anomaly using LM.

shape of the diffusion image in the optimization.

7. Conclusions and future work. We have analyzed why several popular non-
linear least squares solvers perform poorly for problems with ill-conditioned Jacobians,
in particular for problems arising in DOT, our problem of interest. Based on this
analysis we propose a new method, TREGS, that combines a trust region approach
with regularization for the local model (trust region) problem. In general, we argue,
this leads to better optimization steps. Although this is hard to prove or analyze
analytically, our extensive numerical experiments show that significant performance
improvements are achieved. Compared with LM, the closest competitor, TREGS sig-
nificantly reduces the number of function evaluations and generally also reduces the
number of Jacobian evaluations (though not by a similar factor). A modified TSVD
approach often beats LM for the linear forward problem, but it is not competitive
with TREGS. For problems like the one we are interested in, a function evaluation
corresponds to an expensive (large) dense matrix-vector product, an integral trans-
form, or many solutions of a discretized, 3D PDE. Moreover, the cost of a Jacobian
evaluation is about the same as the cost of a function evaluation.

Although further analysis of our proposed algorithm is needed, we show for general
problems that the algorithm is guaranteed to converge to a first-order critical point if
standard assumptions on the objective function hold.

Important future work remains. We need to do further theoretical analysis of our
algorithm, and we would like to test and analyze the algorithm for other problems
that suffer from ill-conditioned Jacobians. We expect the algorithm to be competitive
for many other such problems, but at this point that is only conjecture.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3086 ERIC DE STURLER AND MISHA E. KILMER

REFERENCES

[1] A. Aghasi, M. Kilmer, and E. L. Miller, Parametric level set methods for inverse problems,
SIAM J. Imaging Sci., 4 (2011), pp. 618–650.

[2] M. Al-Baali and R. Fletcher, Variational methods for non-linear least squares, J. Oper.
Res. Soc., 36 (1985), pp. 405–421.

[3] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 16 (1999), pp. R41–
R93.

[4] D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang,
Imaging the body with diffuse optical tomography, IEEE Signal Process. Mag., 18 (2001),
pp. 57–75.

[5] M. Burger, Levenberg-Marquardt level set methods for inverse obstacle problems, Inverse Prob-
lems, 20 (2004), pp. 259–282.

[6] M. Burger and W. Mühlhuber, Iterative regularization of parameter identification problems
by sequential quadratic programming methods, Inverse Problems, 18 (2002), pp. 943–969.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
2000.

[8] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Classics Appl. Math. 16, SIAM, Philadelphia, 1996.

[9] O. Dorn and D. Lesselier, Level set methods for inverse scattering, Inverse Problems, 22
(2006), pp. R67–R131.

[10] P. E. Gill and W. Murray, Algorithms for the solution of the nonlinear least-squares problem,
SIAM J. Numer. Anal., 15 (1978), pp. 977–992.

[11] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[12] G. H. Golub, M. T. Heath, and G. Wahba, Generalized cross-validation as a method for
choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215–223.

[13] E. Haber, Numerical Strategies for the Solution of Inverse Problems, Ph.D. thesis, University
of British Columbia, 1997.

[14] E. Haber, U. M. Ascher, and D. Oldenburg, On optimization techniques for solving non-
linear inverse problems, Inverse Problems, 16 (2000), pp. 1263–1280.

[15] E. Haber and D. Oldenburg, A GCV based method for nonlinear ill-posed problems, Comput.
Geosci., 4 (2000), pp. 41–63.

[16] M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse ground-
water filtration problems, Inverse Problems, 13 (1997), pp. 79–95.

[17] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion, SIAM, Philadelphia, 1998.

[18] M. Kilmer, E. Miller, M. Enriquez, and D. Boas, Cortical constraint method for diffuse
optical brain imaging, Proc. SPIE, 5559 (2004), pp. 381–391.

[19] M. E. Kilmer and E. de Sturler, Recycling subspace information for diffuse optical tomog-
raphy, SIAM J. Sci. Comput., 27 (2006), pp. 2140–2166.

[20] M. E. Kilmer, E. Miller, A. Barbaro, and D. Boas, Three-dimensional shape-based imag-
ing of absorption perturbation for diffuse optical tomography, Appl. Optics, 42 (2003),
pp. 3129–3144.

[21] M. E. Kilmer and D. P. O’Leary, Choosing regularization parameters in iterative methods
for ill-posed problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204–1221.

[22] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Re-
search, Springer, Berlin, Heidelberg, New York, 1999.

[23] M. Rojas and D. C. Sorensen, A trust-region approach to the regularization of large-scale
discrete forms of ill-posed problems, SIAM J. Sci. Comput., 23 (2002), pp. 1842–1860.

[24] X.-C. Tai and T. F. Chan, A survey on multiple level set methods with applications for identi-
fying piecewise constant functions, Internat. J. Numer. Anal. Model., 1 (2004), pp. 25–47.

[25] K. van den Doel and U. Ascher, On level set regularization for highly ill-posed distributed
parameter estimation problems, J. Comput. Phys., 216 (2006), pp. 707–723.

[26] K. van den Doel and U. Ascher, Dynamic level set regularization for large distributed pa-
rameter estimation problems, Inverse Problems, 23 (2007), pp. 1271–1288.

[27] K. van den Doel, U. M. Ascher, and A. L. ao, Multiple level sets for piecewise constant
surface reconstruction in highly ill-posed problems, J. Sci. Comput., 43 (2010), pp. 44–66.

[28] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

