
MULTILEVEL SPARSE APPROXIMATE INVERSE
PRECONDITIONERS FOR ADAPTIVE MESH REFINEMENT∗

SHUN WANG† AND ERIC DE STURLER‡

We dedicate this paper to Henk van der Vorst, for his friendship, inspiration, and leadership in
numerical linear algebra and numerical algorithm development, on the occasion of his 65th

birthday.

Abstract. We present an efficient and effective preconditioning method for time-dependent
simulations with dynamic, adaptive mesh refinement and implicit time integration. Adaptive mesh
refinement greatly improves the efficiency of simulations where the solution develops steep gradients
in small regions of the computational domain that change over time. Unfortunately, adaptive mesh
refinement also introduces a number of problems for preconditioning in (parallel) iterative linear
solvers, as the changes in the mesh lead to structural changes in the linear systems we must solve.
Hence, we may need to compute a new preconditioner at every time-step. Since this would be
expensive, we propose preconditioners that are cheap to adapt for dynamic changes to the mesh;
more specifically, we propose preconditioners that require only localized changes to the preconditioner
for localized changes in the mesh.

Our preconditioners combine sparse approximate inverses and multilevel techniques. We demon-
strate significant improvements in convergence rates of Krylov subspace methods and significant
reductions of the overall runtime. Furthermore, we demonstrate experimentally level-independent
convergence rates for various problems.

Key words. sparse approximate inverse, multilevel, adaptive mesh refinement, preconditioning,
Krylov subspace methods.

AMS subject classifications. 65F10

1. Introduction. Adaptive Mesh Refinement (AMR) was proposed by Berger
and Oliger in 1984 to solve hyperbolic partial differential equations (PDEs) with dis-
continuous coefficients, shocks, and steep gradients [9, 8]. The method uses finer
meshes to represent areas where the solution changes rapidly, while it uses coarser
meshes to represent areas where the solution changes more slowly. In this way the
method achieves high accuracy while keeping the computational cost low by limiting
the number of mesh cells or elements. AMR has become increasingly popular for a
wide range of problems beyond the solution of hyperbolic PDEs, such as parabolic
PDEs, problems on domains that change shape over time, and optimization problems
in which some property changes that requires accurate spatial resolution, for exam-
ple the anomaly to be resolved in a tomography problem [1]. To make AMR more
flexible and efficient, especially for parallel machines, the computational domain is
usually partitioned into many small mesh blocks, each of which consists of a fixed
small number of mesh cells or elements representing a uniform mesh. The refinement
and derefinement of the mesh lead to structural changes in the system matrix; new
rows and columns may be introduced and existing rows and columns may be removed.
Moreover, in parallel implementations the mesh blocks are redistributed over the pro-
cessors after (each) mesh refinement or derefinement to maintain a good load balance;
see Figure 1.1. Load balancing may require the redistribution of mesh blocks even on

∗This work was supported in part under a Round III Grand Challege Cooperative Agreement with
NASA’s Computational Technologies Project, grant NASA NCC 5-615, through the IBEAM Project
and in part by the Materials Computation Center (UIUC) through grant NSF-DMR 0325939.

†Department of Computer Science, University of Illinois at Urbana-Champaign.
‡Department of Mathematics, Virginia Tech.

1

sturler
Typewritten Text

sturler
Typewritten Text
To appear in Linear Algebra and its Applications 2009

2 SHUN WANG AND ERIC DE STURLER

Fig. 1.1. Typical block distribution before and after mesh refinement. The gray scales indicate
on which processor a grid block resides.

processors where the mesh did not change. So, we need preconditioners that accom-
modate the frequent changes in the mesh and the data redistributions. Unfortunately,
these consequences of AMR make many popular preconditioners unfavorable.

First, preconditioners that depend explicitly on the matrix and the matrix order-
ing, such as incomplete factorizations like ILU and IC [40, 41, 49], are hard to update
for structural changes to the matrix that result from mesh refinement and derefine-
ment. Moreover, the factorization is typically defined with respect to a chosen ordering
of the unknowns; every row and column in the (factors of) the preconditioner depends
on previous rows and columns and choices with respect to fill-in. Even if the mesh
changes only locally, the localized changes in the system matrix generally affect the
factorization of many rows and columns. In addition, in a parallel implementation,
the forward and backward substitutions in preconditioners based on incomplete fac-
torizations lead to synchronization problems among the processors. Although various
methods exist to limit such dependencies for each processor to neighboring processors
only while maintaining reasonable convergence [50, 24, 43, 44, 33, 29], a redistribu-
tion of mesh blocks for load balancing following mesh adaptation will destroy such
localized dependence and introduce global synchronization problems. Hence, these
preconditioners seem unfavorable for problems with dynamic mesh refinement.

Second, domain decomposition preconditioners [26, 27, 10, 25] also appear less
suitable for AMR, if the frequency of mesh adaptation is relatively high and regions
with high mesh resolution traverse the computational domain. In this context, the
decomposition of the domain into subdomains and, hence, the boundaries of the
subdomains change frequently, which means that local factorizations need to be re-
computed often, and coarse grid solvers or Schur complement preconditioners need to
be computed frequently. This would be expensive.

Evaluating the drawbacks of popular preconditioners, we see that a good precon-
ditioner for AMR should have the following properties. Computing or updating the
preconditioner should require only local information from the mesh and the discretiza-
tion (method). In addition, local updates of the preconditioner should be sufficient
to maintain quality, and such local changes should be cheap. So, a local change in
the mesh should not lead to a cascade of global changes in the preconditioner. Fi-
nally, for efficient parallel implementation, the redistribution of mesh cells should not
greatly increase the cost of multiplying a (distributed) vector by the preconditioner.
Considering these criteria, various explicit sparse approximate inverses make good
candidates. These are sparse matrices that approximate the inverse of a sparse ma-
trix A directly; they were first introduced in [2, 28, 3], and more recently have been

MULTILEVEL SAI WITH AMR 3

greatly popularized by [6, 31, 23, 20, 22, 21, 7]. There are several ways to construct
such sparse approximate inverses. A popular method is to minimize the Frobenius
norm of AM − I, subject to some sparsity pattern for the preconditioner M , which
may or may not be fixed a priori, [2, 28, 3, 31, 22, 20]. This gives an explicit rep-
resentation of the approximate matrix inverse. We will refer to preconditioners of
this type generically as SAI (sparse approximate inverse). An important alternative
class of preconditioners constructs an approximate factorization of A−1 ≈ ZD−1WT ,
where Z and W are unit upper triangular and D is diagonal. This includes FSAI [35]
and AINV [6] and variants [5]. In many cases, these latter preconditioners yield more
rapid convergence, but unfortunately they suffer from the same problems as ILU.

It turns out that SAI overcomes the difficulties mentioned above associated with
AMR. Each column of the preconditioner depends only on the mesh in the immediate
neighborhood of the mesh cell with which the column is associated. After mesh refine-
ment, only those columns of the preconditioner that are associated with the changed
mesh blocks (refined or removed) need computing or updating. Hence, we need to
update only a few columns of the approximate inverse. Indeed, as we describe later, a
judicious use of ghost cells for each mesh block restricts updating of the preconditioner
to only computing columns associated with new mesh cells (for linear PDEs). This
makes updating the approximate inverse very cheap. The approximate inverse is rep-
resented in explicit matrix form and applied to vectors by distributed matrix-vector
multiplication. There is no forward or backward substitution for SAI. Therefore, the
redistribution of mesh blocks does not seriously affect the cost of the multiplication
by the sparse approximate inverse.

Unfortunately, the fact that SAI depends only on local information from the mesh
and discretization also has drawbacks. In general, SAI does not approximate the in-
verse well for the smooth, global components of the solution that are often important
in elliptic (like) problems, and this in turn often leads to slow convergence relative to
other preconditioners. To approximate these components better, for many applica-
tions, a large sparsity pattern (a sparsity pattern with many nonzeros) is required for
the approximate inverse. Obviously, a large sparsity pattern leads to high computa-
tional cost in computing the approximate inverse and in applying it at every iteration.
Moreover, the desirable property that each column of the approximate inverse depend
only on local information from the mesh and discretization is then lost. However, we
propose to remedy this problem at low cost by combining the SAI preconditioner with
multilevel corrections using sparse approximate inverses at coarser meshes. We can
do this efficiently by exploiting the hierarchical nature of AMR meshes. This leads
to a relatively simple approach that is efficient in computing and updating the pre-
conditioner and highly effective in reducing the number of iterations with a Krylov
subspace method. Various other approaches for combining sparse approximate in-
verses and multilevel techniques have been proposed, depending on the underlying
problem. In [51, 16, 15, 42] sparse approximate inverses are used as smoothers for
multigrid methods. In [14], sparse approximate inverses are computed in combination
with wavelet-based transforms to derive a hierarchical structure. In [12, 55], algebraic
information is explored to construct multilevel sparse approximate inverse precondi-
tioners. We discuss these approaches and their relation to the present paper in some
more depth in section 2.

Multigrid methods form an alternative for the present approach, and indeed the
multilevel structure of the proposed preconditioners follows the multigrid concept of
coarse grid corrections [52]. In this context, one can consider the sparse approximate

4 SHUN WANG AND ERIC DE STURLER

inverses as smoothers, and, in many cases, sparse approximate inverses have been
shown to be effective smoothers [16, 15]. However, in the context of parallel AMR
simulations, multigrid has some disadvantages, in particular for problems with strong
anisotropy. The traditional solutions for poor error smoothing in weakly coupled
directions, semicoarsening and line smoothers, are not well-suited to parallel AMR
simulations; see [19] and the references there. Note that [19] also proposes an alter-
native within the multigrid framework. Hence, we consider multigrid an important
alternative, and one might view the solution approach in this paper as a Krylov ac-
celeration of a multigrid method (or multigrid as a preconditioner) [47, 48]. However,
we do not follow some of the key ingredients of multigrid. The preconditioner at each
level is applied once, irrespective of whether high frequency components are suffi-
ciently damped, and we do not assume an accurate solve at the coarsest grid. Hence,
it would be hard to analyze the algorithm within the multigrid framework. We view
our approach as generating a sufficiently good preconditioner at each level to affect
strong clustering of the eigenvalues. The latter generally leads to fast convergence.
This will also be the setting to analyze the proposed preconditioners theoretically, but
we will not do this in the present paper. A brief overview of various multilevel solver
approaches related to preconditioners can be found in [4].

The remainder of this paper is organized as follows. In section 2, we discuss the
motivation for multilevel sparse approximate inverse preconditioners, and we outline
some previous approaches. In section 3, we introduce our proposed multilevel sparse
approximate inverse preconditioners for adaptively refined meshes. In section 4, we
give numerical experiments with convergence and timing results. Finally, in section
5, we provide conclusions and discuss future extensions of this work. Although par-
allelization is part of the motivation for our choice of preconditioner, we will not
test parallel implementations in this paper. In this paper, we focus on the underlying
principles and numerical experiments to analyze convergence and sequential runtimes.

2. Multilevel sparse approximate inverse preconditioners. In this paper,
we consider the solution of linear time-dependent diffusion and convection-diffusion
problems on adaptive meshes of the form

ut = (a1ux)x + (a2uy)y + b1ux + b2uy + cu + f,

where the coefficient functions a1, a2, . . . , c depend only on space, and f may depend
on space and time. We discretize these partial differential equations using finite
differences in space and time, and we use implicit time integration by either the
backward Euler method or the Crank-Nicolson method. This results in systems of
linear equations of the form

Au(n+1) = Bu(n) + g, (2.1)

which must be solved for A. Our purpose is to propose efficient preconditioners that
are cheap to compute and update and that lead to fast convergence for these linear
systems. If the coefficient functions do not change with time, the linear system (2.1)
depends only on the time step and the mesh. In many situations, the time step is
fixed (or varies in a minor way), but mesh refinement and derefinement locally change
the discretization. So, we need preconditioners that are cheap to update for such local
changes of the mesh. For nonlinear problems, the coefficient functions will depend
on u as well, leading to a system of nonlinear equations. In addition to structural
changes in the matrix (Jacobian) due to mesh adaptation, there will also be changes in

MULTILEVEL SAI WITH AMR 5

coefficients due to the nonlinear nature of the problem. However, in many problems,
the time step will be such that, even in this case, large changes in the coefficients
will occur at only a few places and the preconditioner can still be updated in a cheap
localized fashion [56].

2.1. Sparse approximate inverse preconditioners. We consider the linear
system Ax = b and a right preconditioner M leading to the preconditioned system
AMy = b with x = My. We want to choose M such that AM is a good approximation
to the identity matrix and M is cheap to compute, update, and apply. A popular way
to compute M is to minimize the Frobenius norm of AM − I [31, 22, 20]. Since

‖AM − I‖2F =
∑

j

‖Amj − ej‖22, (2.2)

where the mj are the columns of M , we can compute each column of M independently
by minimizing ‖Amj − ej‖2 for a given sparsity pattern (with a few nonzeros per
column). So, M can be computed in parallel, solving small least squares problems,
and stored in explicit matrix form.

For our time-dependent (convection-)diffusion problems, the exact inverse of a
system matrix is full. This can easily be seen by considering the Green’s functions
for a 1D diffusion problem. The columns of the exact inverse of the system matrix
are the discrete analogues of Green’s functions. However, the largest coefficients in
the inverse correspond to the mesh points around the point source. Therefore, one
typically chooses a sparsity pattern for M that contains only a few neighboring mesh
points. This also makes it cheap to compute and apply M [31, 22, 20].

The choice of the sparsity pattern is usually the key issue for an effective sparse
approximate inverse preconditioner. A small sparsity pattern yields a cheap precon-
ditioner, but generally leads to slow convergence. A larger sparsity pattern for M
would lead to including more global information per iteration, which alleviates this
slow convergence problem. However, for fast convergence, a large number of nonzeros
per column are required in the approximate inverse, which results in high computa-
tional cost in both constructing and applying the sparse approximate inverse. This
makes the preconditioner too expensive.

Before introducing our approach to improve SAI in the next section, we review
this problem further to provide the basic ideas for our proposed preconditioners. We
point out that the ideas presented in this subsection have been discussed also in one
form or another in the papers cited below and in [15, 16]. In [11], Bollhöfer and
Mehrmann observe for the Laplace equation that, although most eigenvalues of the
residual matrix for the right preconditioned system, E = I−AM , are small, there are
a number of eigenvalues very close to 1, and even a significantly larger stencil (more
nonzero coefficients) of the approximate inverse M does not cure this. The eigenvalues
of E that are close to 1 correspond to smooth eigenvectors. We demonstrate this
for the standard implicit (in time) discretization of the 1D diffusion problem ut =
uxx, x ∈ (0, 1) with homogeneous boundary conditions, and with Δx = 1/128 and
Δt = 1/128. Figure 2.1 shows the eigenvalues of the matrix E = I − AM and
the eigenvectors corresponding to the largest three eigenvalues of E. This example
demonstrates again that sparse approximate inverses are not good at handling low
frequency modes.

To understand the importance of the smooth global modes for a sufficiently ac-
curate approximation of the matrix inverse, we now consider the Green’s function

6 SHUN WANG AND ERIC DE STURLER

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1 33 65 97 129
−1

−0.5

0

0.5

1

Fig. 2.1. Eigenvalues and eigenvectors for the residual E = I − AM arising from an implicit
time step of the discretized diffusion equation ut = uxx, x ∈ (0, 1), with Δx = Δt = 1/128. Left:
eigenvalues of E = I − AM ; right: eigenvectors corresponding to the largest 3 eigenvalues of E.

g(x, τ) for the equation

−auxx + u = f on (0, 1), u(0) = u(1) = 0. (2.3)

We can represent the solution u(x) as

u(x) =
∫ 1

0

g(x, τ)f(τ) dτ, (2.4)

where the Green’s function is (see [13, p. 95])

g(x, τ) =
∞∑

k=1

2 sin kπx

1 + ak2π2
sin kπτ. (2.5)

Analogously, we can represent the discrete solution of Au = f by

u =
n∑

j=1

(A−1)jfj,

where (A−1)j indicates the j-th column of A−1. Hence, A−1 is the discrete analogue
of the Green’s function g(x, τ), each column (A−1)j representing the approximate
solution for a point source at a grid point, f(τ) = δ(τ − τ0). It is clear from (2.5) that
the lower frequency components (small k) have much larger weights than the higher
frequency components (large k). Analogously, substituting f(τ) above and g(x, τ)
from (2.5) in (2.4) immediately shows that the columns of A−1 have relatively large
low frequency components and small high frequency components. In fact, (2.4) and
(2.5) indicate that, unless f has very large high frequency components, the solution
is largely determined by the low frequency components. Therefore, we cannot expect
to approximate A−1 accurately, unless we represent the low frequency components
reasonably accurately. The issue then is to do this at low cost.

Unfortunately, accurately representing low frequency components with respect to
the basis imposed by the mesh requires the approximation to the inverse, M , to be
fairly dense (even if many of the coefficients are relatively small). This makes the
construction of M and the matrix-vector product with M very expensive, especially
on a parallel computer. So, for the purpose of efficiency, we require a practical sparsity

MULTILEVEL SAI WITH AMR 7

(a) (b)

Fig. 2.2. Left: The Green’s function for (2.3) with a point source in the middle of the domain
and its SAI approximation. To emphasize that SAI approximates the tip of the Green’s function,
we also superimpose the computed approximation on the Green’s function. Right: The Green’s
function and its SAI approximation in the frequency domain. Notice the poor approximation for low
frequencies.

pattern for an approximate inverse to have a small local stencil, often the same as that
of the matrix A itself. In that case, the Frobenius norm minimization (2.2) gives the
columns of the approximate inverse a small wedge shape (see Figure 2.2(a)), which
approximates the tip of the Green’s function. In Figure 2.2(b) we plot the frequency
decomposition of this wedge shaped function. We see that SAI approximates the
Green’s function well for high frequency modes, but has large errors for low frequency
modes. Due to the local support property, SAI is unable to capture the low frequency
components well.

This problem has been recognized by several people, and various methods have
been proposed as a remedy [14, 12, 18, 17]. The common underlying idea for these
approaches is to construct a new basis, such that the discrete representation of the
Green’s function with respect to this basis is nearly a diagonal matrix; that is, outside
a narrow band the coefficients of the matrix inverse are nearly zero. This allows an
accurate approximation of the inverse by a sparse approximate inverse with very
few nonzeros. In these approaches one has to construct the new basis, the basis
transformation and its inverse, and the representation of the approximate inverse
with respect to this new basis. This procedure is not cheap, but for hard problems
may pay off in a greatly reduced number of iterations. In [14, 18, 17] the authors
discuss various approaches using hierarchical wavelet bases. In particular, in [14] two
hierarchical wavelet bases are constructed using second generation wavelets, so that
unstructured meshes can be handled well. The idea is that smooth regions in the
Green’s function lead to small wavelet coefficients that are accurately approximated
by zeros. On the other hand, in [12] strictly algebraic information is used to find a
multilevel basis. To be specific, the coarsening process is based on the construction
of the sparse approximate inverse.

Although we also aim to represent better approximations to the smooth compo-
nents of the inverse in an efficient way using alternative bases, our approach is quite
different. Instead of using new bases (explicitly or implicitly), we exploit the hierar-
chy of meshes already present for the AMR representation. This avoids the need for
any new bases, and hence keeps the computational cost of our approach very low (see
the numerical experiments). This is all the more important for us since we aim at

8 SHUN WANG AND ERIC DE STURLER

Ω̂ Ω1 Ω2 Ω3

Fig. 3.1. A hierarchy of uniform meshes.

Ω̂1 Ω̂2 Ω̂3

Fig. 3.2. Composite meshes corresponding to a hierarchy of uniform meshes.

problems where the mesh possibly changes every time step. The smooth components
of the Green’s functions can be represented cheaply and reasonably accurately using
only a few nonzero coefficients at coarse level meshes. Hence, we do not aim for a basis
in which many or most coefficients of the approximate inverse can be approximated
accurately by zeros. Rather, we exploit the hierarchy of meshes to approximate the
components of the Green’s function as economically as possible at the appropriate
level. The key observation is that representing ‘most’ of M at the coarse levels leads
to efficient storage of M and makes the multiplication by M very cheap. This leads
to an efficient hierarchical preconditioner that is cheap to update for changes in the
mesh. We will introduce our method in detail in the next section.

3. Multilevel Sparse Approximate Inverse Preconditioners for Adap-
tively Refined Meshes. First, we introduce some useful notation for adaptive
(AMR) meshes and the matrices represented on these meshes.

Adaptive mesh refinement yields a hierarchy of uniform meshes; we denote the
uniform mesh at level � by Ω� (see the 2D example in Figure 3.1). Higher level meshes
have increasingly finer resolution, typically cover smaller and smaller subdomains,
and are restricted to parts of the domain covered by the next lower level (forming
a hierarchy of meshes). Note that higher level meshes need not be contiguous. In
addition to these uniform meshes, we consider compositions of uniform meshes. As
shown in Figure 3.2, we recursively define Ω̂� as the composite mesh that results from
combining meshes Ω� and Ω̂�−1, excluding those mesh components (points, faces,
cells) from Ω̂�−1 that are covered by Ω�. The initial composite mesh is Ω̂1 = Ω1. In
many applications, we have a minimum level of refinement �∗, i.e., Ω�∗ covers the
whole domain. So, Ω̂� = Ω� for � ≤ �∗. For mesh levels above �∗, we have adaptive
local refinements as required by solution accuracy.

MULTILEVEL SAI WITH AMR 9

��

�

�

�ChWh

Sh

Eh

Nh

OH PH

QH RH

� �

� �

Oh Ph

Qh Rh

WH CH

NH

(a) (b) (c)

Fig. 3.3. Matrix operations on a nonuniform mesh. (a) The boundary between two mesh levels.
(b) The fine grid mesh cell Ch has a ghost cell Eh as its east neighbor. Since there is no real mesh
cell corresponding to Eh, the ghost cell value is computed by an interpolation using coarse grid mesh
cells OH , PH , QH and RH . (c) The coarse grid mesh cell CH has a ghost cell WH as its west
neighbor. Since the corresponding real mesh cell has been refined, the ghost cell value is computed
by a restriction using fine grid mesh cells Oh, Ph, Qh and Rh.

Although the resulting composite meshes are nonuniform and the uniform meshes
at a particular refinement level are noncontiguous, we can define operations on these
meshes as if they were uniform meshes by the use of ghost cells. We define one or
more layers of ghost cells around each mesh block, which forms a small part of the
uniform mesh at a particular level. Any operation on a (local) group of cells can now
be implemented as if the mesh is uniform, using the ghost cell values for references
to mesh cells in neighboring mesh blocks. Of course, these ghost cell values must
be computed (or copied) before carrying out this operation; see below. This use of
ghost cells has two major advantages: (1) computations on mesh cells can be defined
in a simple, consistent way, and (2) changes to the mesh do not change the matrix
coefficients except for the creation and removal of matrix rows corresponding to the
creation and removal of mesh blocks. For example, we do not need to change the
matrix row for a particular variable associated with a mesh block if neighboring mesh
blocks are removed by mesh derefinement.

The values at ghost cells are determined in one of three ways. If the corresponding
neighboring mesh block has the same refinement level, the ghost cell takes its value
from the neighboring real mesh cell (a copy). If the neighboring mesh block has a
lower refinement level (coarser), the ghost cell value is computed by an interpolation
from the coarse level (existing) real mesh cells. If the neighboring block has a higher
refinement level (finer), the ghost cell value is computed by a restriction from the
higher level real mesh cells (often trivial restriction or averaging). See Figure 3.3. So,
using ghost cells, the coefficients for a matrix defined on a nonuniform mesh are the
same as those for a matrix defined on a uniform mesh. The matrix-vector product is
implemented in two steps. First, the ghost cells are assigned a value by a copy, an
interpolation, or a restriction. Then, using the ghost cells, the matrix-vector product
is carried out as for a matrix defined on a uniform mesh. In this way, local changes to
mesh blocks do not affect the rows of the matrix corresponding to cells in other mesh
blocks.

For more details, especially on implementation, we refer to the documentation
of the PARAMESH package [38, 39, 46, 45], which we use to implement hierarchical
AMR meshes and related data structures, and to [56]. PARAMESH is a FORTRAN90
parallel package for developing multidimensional AMR simulations. It builds a hier-
archy of meshes with varying spatial resolution. The meshes consist of (small) mesh

10 SHUN WANG AND ERIC DE STURLER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

6

14 15 16 17

7 8 9

3 4 5

10 11 12 13

Fig. 3.4. Mesh structure of PARAMESH.

blocks arranged in a tree data structure (see Figure 3.4). The mesh blocks are, typi-
cally, of small size, e.g. 4× 4, to enable easy load balancing and to make AMR more
flexible. Many other packages that support adaptive mesh refinement exist, such as
libMesh [34], SAMRAI [32], and CLAWPACK [37, 36].

To make the matrix-vector product cheap and convenient, especially on parallel
machines, we store our sparse matrices row by row with the corresponding mesh
blocks. Let A� be the matrix defined on composite mesh Ω̂�. For the experiments
in this paper, we choose the sparsity pattern of A� as the sparsity pattern for M�

(the sparse approximation to A� defined on Ω̂�), but this is easily generalized to other
(local) patterns, such as the sparsity pattern of Ak

� [22, 20]. Since we store the matrix
row by row, it is convenient to use left preconditioning, solving the preconditioned
system MAx = Mb (with residual matrix E = I −MA). Hence, on each composite
mesh Ω̂�, we define M� as the matrix that minimizes

‖M�A� − I‖F = ‖AT
� MT

� − I‖F (3.1)

given the chosen sparsity pattern, instead of the matrix that minimizes ‖A�M�− I‖F ,
which is more commonly used for SAI preconditioning; see also [4]. However, our
multilevel preconditioning methods introduced below can be used for both left and
right preconditioning. Due to the locality of the sparsity pattern, each row of M�

associated with a given mesh cell depends only on the rows of A� that correspond
to neighboring mesh cells (and hence potentially neighboring mesh blocks). We can
consider the definition of the matrices M� based on a sequence of adaptive refinements
generating a given locally refined mesh. In practice, of course the matrices will be
the result of refinements and derefinements. We start by defining M1 on Ω̂1 = Ω1

based on (3.1). Next we compute M2 on Ω̂2 by computing only the rows for new
mesh cells generated by mesh refinements on Ω1. The use of ghost cells, discussed
above, ensures that we do not need to make any changes to rows corresponding to
mesh blocks that are not refined. We continue this process until we have defined the
finest composite mesh. Our use of ghost cells also means that the rows of any M�

remain unchanged if the corresponding cells themselves are not refined or derefined in
mesh adaptations. Hence, for mesh refinements we need only compute new rows for
the matrix and preconditioner for newly created mesh blocks (and their mesh cells).
For derefinements we simply remove the rows corresponding to blocks (and their cells)
that are removed. No further computations are required.

Using the definitions of composite meshes and matrices above, we now define our
multilevel preconditioner in terms of the matrices A� and their sparse approximate

MULTILEVEL SAI WITH AMR 11

inverses, M�, for each composite mesh Ω̂�. We first define a two-level preconditioner,
and then define the multilevel version recursively. Algorithm 1 describes the mul-
tiplication of a vector z defined on the fine, composite mesh Ω̂h by the two-level
preconditioner P2 for Ω̂h using a coarse, composite mesh Ω̂H . The coarse level mesh,
Ω̂H , does not need to be the next coarser mesh of Ω̂h. It can be an arbitrary coarser
mesh.

Algorithm 1 Compute y ← P2z.
1: Multiply z by the fine mesh sparse approximate inverse: ỹ ←Mhz
2: Compute fine mesh defect: dh ← z −Ahỹ
3: Restrict dh to the coarse mesh: dH ← IH

h dh

4: Multiply dH by the coarse mesh sparse approximate inverse: eH ←MHdH

5: Compute prolongation of eH to the fine mesh: eh ← Ih
HeH

6: Add coarse mesh correction to the preconditioned vector: y ← ỹ + eh

The final result y = P2z consists of an initial approximation Mhz to A−1
h z (step

1), defined by the usual sparse approximate inverse preconditioner Mh, and a coarse
mesh correction using MH (steps 2-6). We denote this two-level method by SAI2.
In SAI2, Ω̂h is Ω̂�max , the finest composite mesh, whereas, Ω̂H need not be the next
coarser grid, Ω̂�max−1. A good choice for Ω̂H is Ω̂�∗ , since Ω̂�∗ is invariant. Although
we do not try this in the present paper, it seems worthwhile to construct a more
accurate sparse approximate inverse at this invariant level, as it has to be computed
only once. The preconditioning operator for SAI2 is

P2 = Mh + Ih
HMHIH

h (I −AhMh), (3.2)

and its residual matrix is

E2 = I − P2Ah = (I − Ih
HMHIH

h Ah)(I −MhAh).

The matrix I−Ih
HMHIH

h Ah dampens low frequency modes (of the error) much better
than I −MhAh.

To turn this two-level preconditioner into a multilevel preconditioner, we replace
eH = MHdH in step 5 of Algorithm 1 by a multilevel correction based on a recursive
application of Algorithm 1. On the coarsest mesh Ω̂1 we define the preconditioner
P (1) = M1. On the next level, Ω̂2, we define

P (2) = M2 + I2
1P (1)I1

2 (I −A2M2), (3.3)

and more generally, we define

P (�) = M� + I�
�−1P

(�−1)I�−1
� (I −A�M�). (3.4)

The sequence of coarse(r) level corrections combines more global information. We
refer to our sparse approximate inverse preconditioner with multilevel corrections as
SAI-MC. In most cases, we apply the coarse mesh correction recursively to level 1
(coarsest level). However, for certain problems, the mesh width on the coarsest levels
may be too large for the coarse mesh operator to capture rapid changes in the local
equations, for example, rapid changes in coefficient functions of a partial differential
equation. At that point, corrections on those coarsest levels are often not effective,
and the recursive scheme should stop at the lowest level that has sufficient resolution

12 SHUN WANG AND ERIC DE STURLER

SAI MC SAI MC
SAI
Green’s function

(a) (b)

Fig. 3.5. Left: The Green’s function for (2.3) with a point source in the middle of the domain
and its approximation by SAI and by SAI-MC. Right: The Green’s function and its approximation
by SAI and by SAI-MC in the frequency domain. Notice the much better approximation by SAI-MC
for low frequencies.

to capture the relevant physics. Alternatively, we can use special schemes to derive
proper coarse mesh operators for those mesh levels [52].

In Figure 3.5, we show the improvement of SAI-MC over SAI for the 1D problem
given in (2.3), cf. Figure 2.2. SAI-MC leads to a much better approximation of the
Green’s function, especially for the low frequency modes. By incorporating global
information through multilevel corrections, we obtain a very good approximation to
the exact inverse at a fairly low cost. We discuss this issue further in section 4.

4. Numerical results. We present results for three two-dimensional model
problems. The first two model problems are variations of a model problem in [53].
All spatial derivatives are approximated by standard, central, finite differences, except
at the boundaries between levels, where the discretization is adapted as described in
the previous section. For the time derivative, we use either backward Euler or the
trapezoid rule (Crank-Nicolson). However, all experiments in this section were done
using the backward Euler method. The discretization of a partial differential equation
(PDE) on a nonuniform mesh using ghost cells leads to slight nonsymmetry of the
resulting linear systems for the coefficients defined on or near the interface between
(sub)meshes with different levels of refinement, even if the PDE itself is self-adjoint.
Hence we use BiCGStab [53] as the solver in all cases, as it is appropriate for non-
symmetric systems and does not require a matrix transpose. In the discussion of our
experiments we use ‘NONE’ to denote no preconditioning, ‘SAI’ to denote the stan-
dard sparse approximate inverse preconditioner (with the same sparsity pattern as the
system matrix), ‘SAI2’ to denote the two-level sparse approximate inverse precondi-
tioner (3.2) described in Algorithm 1, with Ω̂�∗ as the uniform coarse mesh (the mesh
at the minimum refinement level �∗, discussed in the previous section), and ‘SAI-MC’
to denote the full multilevel sparse approximate inverse (with coarse mesh correction
on all levels). In our experiments �∗ = 4 corresponding to a 32 × 32 uniform mesh.
Moreover, we use M , P2, and Pm to denote the preconditioning matrices for SAI,
SAI2 and SAI-MC respectively.

To compare the various preconditioners, we discuss the clustering of eigenval-
ues, generally a good indicator for the effectiveness of a preconditioner to reduce the
number of iterations, the convergence of preconditioned BiCGStab for multiple time

MULTILEVEL SAI WITH AMR 13

u = 1

un = 0

un = 0 un = 0
a = 102

a = 10−5

a = 103

Fig. 4.1. DIFF: diffusion problem ut = ∇ · (a∇u) in the unit square [0, 1] × [0, 1].

steps as measured by the number of iterations, and the CPU time of preconditioned
BiCGStab for multiple time steps. In addition, we give the CPU time for the local
updates to the preconditioner (at each level where refinements or derefinements oc-
cur) to emphasize how cheap updating our proposed multilevel preconditioner is. All
timings were carried out on a Dell desktop computer with a 32-bit Intel processor
running at 2GHz (under Linux).

Problem 1. The first problem is the diffusion equation ut = ∇ · (a∇u) in the
unit square, with a discontinuous coefficient function a(x) and boundary conditions
as shown in Figure 4.1. The initial value is u = 0 in the whole domain. We denote
this problem as DIFF.

Before we discuss the spectrum of the preconditioned matrices and the perfor-
mance of the various preconditioners, we provide some insight in the structure of the
preconditioners as a (single) matrix defined at the finest composite mesh and the ac-
tual cost of multiplying a vector by each preconditioner in Table 4.1. The algebraic
sparsity of each preconditioner is measured by the average number of nonzeros per
column of the preconditioner given as a single matrix on the finest composite mesh.
It indicates how much information the preconditioner uses for a single mesh cell. The
actual work for the matrix-vector product with each preconditioner is measured by the
average number of floating point operations per column in that matrix-vector product.
We give this comparison for the first five time steps, with the maximum refinement
level increasing from level 5 to level 8. In our numerical experiments, to demonstrate
the efficiency of our preconditioning approach, we update the mesh at each timestep
using a simple gradient based refinement criterion. The maximum refinement level
(�max) and the number of unknowns (n) give an indication of the number of refine-
ments (derefinements happen as well). The table illustrates the significant increase
of the ‘stencil’ of SAI2 relative to SAI (note that the coarse level for the two-level
preconditioner is level 5 independent of the highest refinement level), which typically
results in a significant reduction in the number of iterations (see below). The table
also shows that the SAI-MC preconditioner is essentially a dense matrix, but for a
matrix-vector product requires only about 4 times the number of floating point oper-
ations that the standard 5-point SAI takes. Hence the cost of a matrix-vector product
with the SAI-MC preconditioner scales linearly with the mesh size.

In Figure 4.2, we compare the spectra of the preconditioned systems, A, MA,

14 SHUN WANG AND ERIC DE STURLER

Table 4.1

Comparison of algebraic sparsity pattern and actual computational work for SAI (M), SAI2
(P2) and SAI-MC (Pm) for the first five timesteps. The value of �max indicates the highest level
of refinement; n indicates the total number of unknowns in the finest composite mesh; the algebraic
sparsity pattern is the average number of nonzeros per column of the preconditioner as a single
matrix on the finest composite mesh; and the actual work gives the average number of floating point
operations per unknown for the matrix-vector product.

time algebraic sparsity pattern actual work
step lmax n (nnz per column) (#flop/n)

M P2 Pm SAI SAI2 SAI-MC
1 5 4096 4.9 24.1 4022 10 30 26.6
2 6 6112 5.5 55.8 6027 10 26.8 38.0
3 7 12448 5.7 204.3 12420 10 23.2 41.6
4 8 23488 5.9 601.0 23421 10 21.8 44.2
5 8 27136 5.9 636.4 27110 10 21.6 42.6

Table 4.2

Convergence results (number of iterations) for DIFF.

time step 1 2 3 4 5
�max 5 6 7 8 8
n 4096 6112 12448 23488 27136

NONE 864 681 1296 2309 2159
SAI 118 111 164 235 265
SAI2 82 72 83 85 85

SAI-MC 17 18 16 17 19

P2A, and PmA for a typical time step. Note the differences in scale for the real axis
(which are unavoidable in this case). The small imaginary part of a few eigenvalues
is caused by the nonsymmetry of the matrix due to a nonuniform mesh. Standard
SAI already gives a significantly better clustering of the spectrum compared with no
preconditioning. However, it leaves many eigenvalues close to the origin. The two-level
preconditioner SAI2 clusters more eigenvalues near 1 and, more importantly, leaves
fewer eigenvalues close to the origin. The full multilevel preconditioner, SAI-MC,
clusters nearly all eigenvalues in a small disk centered at 1 with a radius of about
0.15. A few eigenvalues lie outside the disk, but they are well-separated from the
origin compared with the eigenvalues of the other preconditioners. Moreover, Krylov
subspace methods converge rapidly for linear systems with a clustered spectrum and
a few outlying eigenvalues [54, 30].

The convergence results for DIFF are listed in Table 4.2. The convergence crite-
rion is

‖b−Axk‖2
‖b‖2 < 10−12.

We use this stringent tolerance, which is relatively small compared with the truncation
error, to carefully evaluate the convergence and runtimes of the solver for the proposed
preconditioners. SAI-MC significantly reduces the number of iterations compared
with standard SAI and SAI2. Furthermore, the convergence rate appears to be level-
independent as the mesh is (locally) refined from level 5 to level 8 in time steps 1
through 5 (same for SAI2). However, we solve a different system with a different

MULTILEVEL SAI WITH AMR 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500

−0.1

−0.15

−0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 1 2 3 4 5 6 7

−0.1

−0.15

−0.05

0

0.05

0.1

0.15

Fig. 4.2. Spectra of A, MA, P2A and PmA in the complex plane for DIFF.

right hand side at each time step. Therefore, we also check the number of iterations
for the same (second) time step on meshes with different maximum refinement levels;
the results are given in Table 4.3. Note the slight reduction of iterations for finer and
finer meshes. This is often observed for multigrid methods and optimal multilevel
preconditioners. Also note the roughly linear behavior of CPU time versus the number
of unknowns (n). The multigrid method is known to have h-independent convergence
for diffusion problems, but it has difficulties handling problems with discontinuous
coefficients, strong convection, and strong anisotropy. We demonstrate experimentally
in this and subsequent examples that we obtain level-independent convergence for
exactly those problems with our multilevel preconditioner at very low cost (see CPU
times below).

Table 4.4 gives the timing results for the DIFF problem. Although SAI-MC
requires a small amount of extra work for the multilevel corrections compared with

16 SHUN WANG AND ERIC DE STURLER

Table 4.3

Convergence results of SAI-MC for different meshes at the 2nd time step of DIFF.

�max n niters solver time
5 4096 16 0.92
6 6112 18 1.71
7 16096 14 3.26
8 36448 14 7.05

Table 4.4

Timing results (seconds) for DIFF.

time step 1 2 3 4 5 total
NONE 9.85 11.64 43.71 146.28 157.79 369.27
SAI 2.23 3.17 9.20 25.08 32.17 73.19
SAI2 2.82 3.55 7.42 13.75 15.84 44.72

SAI-MC 0.96 1.71 2.97 6.06 7.54 20.58
Update all M� 0.12 0.58 0.21 0.32 0.11 1.34

SAI and SAI2, it reduces the overall solver time by about a factor four compared
with SAI and by about a factor two compared with SAI2. The CPU time for SAI-
MC varies roughly linearly with the number of unknowns per system due to the level
independent convergence rate. The cost of updating the preconditioner is about six
percent of the solver time for SAI-MC (with BiCGStab) and less than two percent
of the solver time for SAI. Note that the relative cost of updating the preconditioner
goes down in further iterations as (generally) fewer changes are needed; in the first
few time steps all columns must be computed.

Problem 2. Our next problem, CONVECT, is a convection-diffusion problem
(with strong convection) ut = ∇ · (a∇u) + bux on the unit square [0, 1]× [0, 1] with
b shown in Figure 4.3(a) and the same diffusion coefficient a, boundary conditions,
and initial solution as in DIFF. We use central differences for the convective terms.
However, on the coarsest composite mesh that covers the whole domain (�∗ = 4), the
mesh Péclet number is less than two, so that a discrete maximum principle always
holds.

a = 102

a = 10−5

a = 103

b = 103

b = 0
b = 0

a = 103

a = 1

b = 1

b = 103

(a) (b)

Fig. 4.3. Left: coefficients of CONVECT; right: coefficients of ANISO.

The spectra of the preconditioned matrices for the convection-diffusion problem
on a typical adaptive mesh are given in Figure 4.4. The results are similar to those for
the problem with only diffusion. The preconditioners SAI2 and SAI-MC show similar
improvements over NONE and SAI here as for the diffusion problem, although the

MULTILEVEL SAI WITH AMR 17

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

−0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

−0.05

0

0.05

0.1

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

Fig. 4.4. Spectra of A, MA, P2A and PmA for CONVECT.

magnitudes of the imaginary parts of the eigenvalues are slightly larger, since the
problem is not self-adjoint.

We give the convergence and timing results for CONVECT in Table 4.5. Again
we see significant improvements in terms of both iteration count and solution time
for the multilevel versions. In addition, both for SAI2 and SAI-MC we see that the
number of iterations remains roughly constant for increasingly refined meshes. Notice
that for the first two time steps the solution time with the SAI2 preconditioner is
slightly longer than with the SAI preconditioner (also for DIFF). The solution time
with the SAI-MC preconditioner is the shortest for each time step.

Problem 3. ANISO is a diffusion problem, ut = auxx + buyy + f , with strongly
anisotropic, discontinuous diffusion coefficients, defined on the unit square with homo-
geneous boundary conditions. The coefficient functions a(x, y) and b(x, y) are given

18 SHUN WANG AND ERIC DE STURLER

Table 4.5

Convergence and timing results for CONVECT.

time step 1 2 3 4 5
�max 5 6 7 8 8

n 4096 6208 12064 23056 32848
convergence (niters)

NONE 832 692 1270 3985 10051
SAI 140 125 169 249 342
SAI2 90 80 84 98 92

SAI-MC 22 18 19 21 21
timing (secs)

NONE 9.47 12.00 41.88 248.78 882.01
SAI 2.65 3.62 9.23 25.83 49.64
SAI2 3.08 3.97 7.30 15.55 19.95

SAI-MC 1.25 1.72 3.46 7.35 9.83
Update all M� 0.14 0.69 0.22 0.36 0.32

Table 4.6

Convergence and timing results for ANISO.

timestep 1 2 3 4 5
�max 4 5 6 7 8

n 4096 12544 28672 42496 48640
convergence (niters)

NONE 140 312 558 1271 2563
SAI 54 127 291 306 430
SAI2 31 44 77 156 156

SAI-MC 28 40 34 36 37
timing (secs)

NONE 1.17 7.30 30.07 100.25 227.71
SAI 0.79 5.14 26.58 41.51 65.65
SAI2 0.89 2.86 9.91 29.33 33.49

SAI-MC 1.09 3.89 7.25 13.19 19.20
Update all M� 0.385 0.793 1.516 1.298 0.793

in Figure 4.3(b). The source term f is given by f = 10 in the small central square
[0.4, 0.6]× [0.4, 0.6] and f = 0 elsewhere. The initial solution of ANISO equals u = 0.

We give the convergence results and the timing results for ANISO in Table 4.6.
The multilevel sparse approximate inverse preconditioner, SAI-MC, significantly re-
duces the number of the iterations and the overall computational time. Moreover, it
again achieves a level-independent convergence rate. Note that for this problem the
use of the SAI2 preconditioner does not lead to level-independent convergence. We
also see that for the first two time steps the full multilevel preconditioner is not faster
(in time) than the 2-level preconditioner. However, as we further refine the mesh in
subsequent time steps, SAI-MC is the fastest in time.

5. Conclusions and Future Work. We have introduced a class of multilevel
preconditioners that can be efficiently updated for rapid changes in AMR meshes.
The cost in CPU time of updating the preconditioner is only a few percent of the

MULTILEVEL SAI WITH AMR 19

(fastest) preconditioned linear solver time. The preconditioner exploits the hierarchi-
cal nature of AMR meshes to represent smooth global components of an approximate
inverse efficiently on coarse meshes. We have shown experimentally that the proposed
multilevel preconditioners yield level-independent convergence rates for a number of
challenging problems. In future work, we will extend this to efficient precondition-
ers for structural optimization problems involving the equations of elasticity in three
dimensions [56, 57, 58].

6. Acknowledgements. The PARAMESH software used in this work was de-
veloped at the NASA Goddard Space Flight Center and Drexel University under
NASA’s HPCC and ESTO/CT projects and under grant NNG04GP79G from the
NASA/AISR project.

REFERENCES

[1] W. Bangerth and A. Joshi, Adaptive finite element methods for the solution of inverse
problems in optical tomography, Inverse Problems, 24 (2008), pp. 1–22.

[2] M. W. Benson, Iterative solution of large scale linear systems, master’s thesis, Lakehead
University, Thunder Bay, Ontario, 1973.

[3] M. W. Benson and P. O. Frederickson, Iterative solution of large sparse linear systems
arising in certain multidimensional approximation problems, Utilitas Mathematica, 22
(1982), pp. 127–140.

[4] M. Benzi, Preconditioning techniques for large linear systems: A survey, Journal of Compu-
tational Physics, 182 (2002), pp. 418–477. doi:10.1006/jcph.2002.7176.

[5] M. Benzi, J. Cullum, and M. Tůma, Robust approximate inverse preconditioning for the
conjugate gradient method, SIAM Journal on Scientific Computing, 22 (2000), pp. 1318–
1332.

[6] M. Benzi, C. D. Meyer, and M. Tůma, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM Journal on Scientific Computing, 17 (1996), pp. 1135–
1149.

[7] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric
linear systems, SIAM Journal on Scientific Computing, 19 (1998), pp. 968–994.

[8] M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Jour-
nal of Computational Physics, 82 (1989), pp. 64–84.

[9] M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equa-
tions, Journal of Computational Physics, 53 (1984), pp. 484–512.

[10] P. E. Bjørstad, W. Gropp, and B. F. Smith, Domain Decomposition: Parallel multilevel
methods for elliptic partial differential equations, Cambridge University Press, Cambridge,
UK, 1996.

[11] M. Bollhöfer and V. Mehrmann, A new approach to algebraic multilevel methods based on
sparse approximate inverses, tech. report, Preprint SFB393/99-22, Department of Mathe-
matics, TU Chemnitz, Germany, 1999.

[12] , Algebraic multilevel methods and sparse approximate inverses, SIAM Journal on Matrix
Analysis and Applications, 24 (2002), pp. 191–218.

[13] R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 3rd
edition ed., 1999.

[14] R. Bridson and W.-P. Tang, Multiresolution approximate inverse preconditioners, SIAM
Journal on Scientific Computing, 23 (2002), pp. 463–479.

[15] O. Bröker and M. Grote, Sparse approximate inverse smoothers for geometric and algebraic
multigrid, Applied Numerical Mathematics, 41 (2002), pp. 61–80.

[16] O. Bröker, M. Grote, C. Mayer, and A. Reusken, Robust parallel smoothing for multi-
grid via sparse approximate inverses, sisc, 23 (2001), pp. 1395–1416.

[17] T. F. Chan and K. Chen, Two-stage preconditioners using wavelet band splitting and sparse
approximation, Tech. Report CAM 00-26, Department of Mathematics, UCLA, 2000.

[18] T. F. Chan, W.-P. Tang, and W.-L. Wan, Wavelet sparse approximate inverse precondi-
tioners, BIT Numerical Mathematics, 37 (1997), pp. 644–660.

[19] Z. Cheng, Krylov solvers for error smoothing for strongly anisotropic problems on structured
AMR meshes, master’s thesis, University of Illinois at Urbana-Champaign, 2005.

20 SHUN WANG AND ERIC DE STURLER

[20] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners,
SIAM Journal on Scientific Computing, 21 (2000), pp. 1804–1822.

[21] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM
Journal on Scientific Computing, 18 (1997), pp. 1657–1675.

[22] , Approximate inverse preconditioners via sparse-sparse iterations, SIAM Journal on
Scientific Computing, 19 (1998), pp. 995–1023.

[23] J. Cosgrove, J. C. Díaz, and A. Griewank, Approximate inverse preconditionings for
sparse linear systems, International Journal of Computer Mathematics, 44 (1992), pp. 91–
110.

[24] E. de Sturler, Incomplete Block LU preconditioners on slightly overlapping subdomains for a
massively parallel computer, Applied Numerical Mathematics (IMACS), 19 (1995), pp. 129–
146.

[25] C. Farhat, K. Pierson, and M. Lesoinne, The second generation of FETI methods and
their application to the parallel solution of large-scale linear and geometrically nonlinear
structural analysis problems, Computer Methods in Applied Mechanics and Engineering,
184 (2000), pp. 333–374.

[26] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm, International Journal for Numerical Methods in Engineering,
32 (1991), pp. 1205–1227.

[27] , Implicit parallel processing in structural mechanics, Computational mechanics advances,
2 (1994), pp. 1–124.

[28] P. O. Frederickson, Fast approximate inversion of large sparse linear systems, Tech. Report
Math. Report 7, Lakehead University, Thunder Bay, Ontario, Thunder Bay, Ontario, 1975.

[29] M. J. Gander, Optimized Schwarz methods, SIAM Journal on Numerical Analysis, 44 (2006),
pp. 699–731.

[30] A. Greenbaum, Iterative Methods for Solving Linear Systems, Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

[31] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses,
SIAM Journal on Scientific Computing, 18 (1997), pp. 838–853.

[32] R. D. Hornung, A. M. Wissink, and S. R. Kohn, Managing complex data and geometry in
parallel structured AMR applications, Engineering with Computers, 22 (2006), pp. 181–195.

[33] C. Japhet, F. Nataf, and F. Rogier, The optimized order 2 method. Application to
convection-diffusion problems, Future Generation Computer Systems, 18 (2001), pp. 17–30.

[34] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, libMesh: a C++
library for parallel adaptive mesh refinement/coarsening simulations, Engineering with
Computers, 22 (2006), pp. 237–254.

[35] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse precondition-
ings, SIAM Journal on Matrix Analysis and Applications, 14 (1993), pp. 45–58.

[36] R. J. LeVeque, Clawpack web page. http://www.amath.washington.edu/ claw/.
[37] , CLAWPACK Version 4.3, User’s Guide, University of Washington, Department of

Applied Mathematics, Box 352420, Seattle, Washington 98195-2420, 4.3 ed., 2006.
[38] P. MacNeice and K. M. Olson, PARAMESH V4.1 User’s Manual.
[39] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and C. Packer,

PARAMESH: A parallel adaptive mesh refinement community toolkit, Computer Physics
Communications, 126 (2000), pp. 330–354.

[40] J. Meijerink and H. A. van der Vorst, An iterative solution method for linear equations
systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977),
pp. 148–162.

[41] J. A. Meijerink and H. A. van der Vorst, Guidelines for the usage of incomplete decom-
positions in solving sets of linear equations as they occur in practical problems, J. Comput.
Phys., 44 (1981), pp. 134–155.

[42] G. A. Meurant, A multilevel AINV preconditioner, Numerical Algorithms, 29 (2002),
pp. 107–129.

[43] F. Nataf, F. Rogier, and E. de Sturler, Optimal interface conditions for domain decom-
position methods, Tech. Report CMAP-301, Centre de Mathematiques Appliquées, CNRS
URA-756, Ecole Polytechnique, 1994.

[44] , Domain decomposition methods for fluid dynamics, in Navier-Stokes Equations and
Related Nonlinear Problems, A. Sequeira, ed., New York, 1995, Plenum Press, pp. 367–
376.

[45] K. M. Olson, PARAMESH: A parallel adaptive grid tool, in Parallel Computational Fluid
Dynamics 2005: Theory and Applications: Proceedings of the Parallel CFD Conference,
College Park, MD, U.S.A., A. Deane, A. Ecer, G. Brenner, D. Emerson, J. McDonough,

MULTILEVEL SAI WITH AMR 21

J. Periaux, N. Satofuka, and D. Tromeur-Dervout, eds., Elsevier, 2006.
[46] K. M. Olson and P. MacNeice, Adaptive Mesh Refinement-Theory and Applications, vol. 41

of Lecture Notes in Computational Science and Engineering, Springer, Berlin Heidelberg,
2005, ch. An Overview of the PARAMESH AMR Software package and Some of Its Appli-
cations, pp. 315–330.

[47] C. W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and as a
preconditioner for singularly perturbed problems, SIAM Journal on Scientific Computing,
19 (1998), pp. 87–110.

[48] , Krylov subspace acceleration of nonlinear multigrid with application to recirculating
flow, SIAM Journal on Scientific Computing, 21 (2000), pp. 1670–1690.

[49] Y. Saad, ILUT: a dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[50] W.-P. Tang, Generalized Schwarz splittings, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 573–595.

[51] W.-P. Tang and W.-L. Wan, Sparse approximate inverse smoother for multigrid, SIAM
Journal on Matrix Analysis and Applications, 21 (2000), pp. 1236–1252.

[52] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.
[53] H. A. van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for

the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[54] , Iterative Krylov Methods for Large Linear systems, Cambridge University Press, Cam-
bridge, April 2003.

[55] K. Wang, J. Zhang, and C. Shen, Parallel multilevel sparse approximate inverse precon-
ditioners in large sparse matrix computations, Supercomputing ’03, Phoenix, Arizona,
(2003).

[56] S. Wang, Krylov subspace methods for topology optimization on adaptive meshes, PhD thesis,
University of Illinois at Urbana-Champaign, Department of Computer Science, September
2007. Advisor: Eric de Sturler, Co-Advisor: Glaucio H. Paulino.

[57] S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using pre-
conditioned Krylov subspace methods with recycling, Internat. J. Numer. Methods Engrg.,
69 (2007), pp. 2441–2468.

[58] S. Wang, E. de Sturler, and G. H. Paulino, Dynamic adaptive mesh refinement for
topology optimization, Internat. J. Numer. Methods Engrg., (2008). Draft NME-Mar-08-
0166, submitted.

