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Abstract. Science and engineering problems frequently require solving a sequence of dual linear
systems. Besides having to store only a few Lanczos vectors, using the biconjugate gradient method
(BiCG) to solve dual linear systems has advantages for specific applications. For example, using
BiCG to solve the dual linear systems arising in interpolatory model reduction provides a backward
error formulation in the model reduction framework. Using BiCG to evaluate bilinear forms—for
example, in quantum Monte Carlo (QMC) methods for electronic structure calculations—leads to a
quadratic error bound. Since our focus is on sequences of dual linear systems, we introduce recycling
BiCG, a BiCG method that recycles two Krylov subspaces from one pair of dual linear systems to
the next pair. The derivation of recycling BiCG also builds the foundation for developing recycling
variants of other bi-Lanczos based methods, such as CGS, BiCGSTAB, QMR, and TFQMR. We
develop an augmented bi-Lanczos algorithm and a modified two-term recurrence to include recycling
in the iteration. The recycle spaces are approximate left and right invariant subspaces corresponding
to the eigenvalues closest to the origin. These recycle spaces are found by solving a small generalized
eigenvalue problem alongside the dual linear systems being solved in the sequence. We test our
algorithm in two application areas. First, we solve a discretized partial differential equation (PDE)
of convection-diffusion type. Such a problem provides well-known test cases that are easy to test and
analyze further. Second, we use recycling BiCG in the iterative rational Krylov algorithm (IRKA)
for interpolatory model reduction. IRKA requires solving sequences of slowly changing dual linear
systems. We analyze the generated recycle spaces and show up to 70% savings in iterations. For our
model reduction test problem, we show that solving the problem without recycling leads to (about)
a 50% increase in runtime.
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1. Introduction. We focus on solving the sequence of dual linear systems,

(1.1) A(j)x(j) = b(j), A(j)∗x̃(j) = b̃(j),

where A(j) ∈ Cn×n and b(j), b̃(j) ∈ Cn vary with j, the matrices A(j) are large and
sparse, the solution of the dual system is relevant, and the change from a pair of
systems to the next is small.

In several application areas, there are important advantages to solving dual lin-
ear systems using the BiCG algorithm [23]. BiCG has a short recurrence, so very
few Lanczos vectors have to be stored. In addition, using BiCG to solve the dual
linear systems arising in interpolatory model reduction provides a backward stable
method (with respect to the interpolation conditions) for computing a reduced-order
model [12] (see section 5.2). This makes BiCG attractive even for symmetric positive
definite (SPD) systems. Furthermore, in several applications, such as QMC algo-
rithms [5], we need to evaluate bilinear forms of the type u∗A−1w, where u,w ∈ Cn
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and A is non-Hermitian. Solving dual linear systems for u and w to compute u∗A−1w
provides a quadratic error bound [54].

Since BiCG is advantageous for solving dual linear systems and we need to solve
a sequence of such systems, we focus on Krylov subspace recycling for BiCG. We refer
to our recycling BiCG method as RBiCG. In addition, the BiCG algorithm forms the
basis of other popular bi-Lanczos based algorithms like CGS [51], BiCGSTAB [56],
QMR [27], and TFQMR [25]. Hence, the derivation of RBiCG is also useful for
developing recycling variants of these algorithms [3].

The convergence of Krylov subspace methods for solving a linear system, to a
great extent, depends on the spectrum of the matrix, and the deflation of eigenval-
ues close to the origin usually improves the convergence rate [42, 53]. If the Krylov
subspace is augmented with an eigenvector, then the associated eigenvalue is effec-
tively deflated. Likewise, for BiCG, it can be shown that if the dual Krylov subspace,
Ki(A(j)∗, r̃0), is augmented with left eigenvectors, the corresponding right eigenvec-
tors are removed from the primal residual (and vice versa if the primal Krylov subspace
is augmented with right eigenvectors) [17]. Therefore, while solving a pair of systems,
we select approximate left- and right-invariant subspaces of A(j) (corresponding to
small eigenvalues in absolute value), and use these to accelerate the solution of the
next pair of systems. This process is called Krylov subspace recycling, and leads to
faster convergence for the next pair of systems.

For solving a single linear system, “recycling” has been used in the algorithms
GCROT [18], based on GCRO [16], and GMRES-DR [42] (an improvement to [41]).
GCRO was extended for multiple right-hand sides in [15]. Deflation-based approaches
for multiple right-hand sides for a fixed matrix are also proposed in [49, 2, 1]. An ex-
tensive analysis of augmentation and deflation approaches for acceleration of restarted
methods is provided in [20]. For solving a sequence of linear systems, the idea of re-
cycling a small, judiciously selected subspace was first proposed in [44], where it is
applied to the GCROT and the GCRO-DR algorithms. Recycling techniques are
adapted to short recurrences in the RMINRES [59] algorithm; see [40] for an im-
proved version. GCROT as in [44], GCRO-DR, and RMINRES all focus on solving a
sequence of single systems rather than a sequence of two dual systems, which is the fo-
cus here. For a comprehensive discussion of recycling algorithms, see [44]. The recent
survey [34] provides a framework for choices in augmentation and deflation approaches
and their links and analysis, starting with a recapitulation of the theory from [16] and
[59] and extending this to a range of other approaches, such as quasi-minimal residual
methods based on QMR [27] and bi-Lanczos-based oblique projection methods. The
survey also discusses how the methods presented in [3, 4] and the present paper relate
to the given framework.

In addition to testing RBiCG in the iterative rational Krylov algorithm (IRKA)
[32] for interpolatory model reduction, we test RBiCG for a model convection-diffusion
problem. PDEs of this type are pervasive in science and engineering, they lead to
nonsymmetric matrices for which BiCG may be well suited, and they provide well-
known test cases that are easy to reproduce and analyze further. Convection-diffusion
problems arise, for example, in the Oseen problem (a fixed-point linearization of the
Navier–Stokes equations), in chemically reacting flows, heat flow in a medium with
transport, and so on. Moreover, any large discretized PDE leads to a potential model
reduction problem, for example, for uncertainty quantification, for optimizing an engi-
neering process, or indirectly estimating parameters in the model using measurements.
We analyze the generated recycle spaces for both test problems, and we show up to
70% reduction in the iteration count. For our model reduction test problem, using
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BiCG instead of RBiCG would take approximately 50% more time to generate the
reduced-order model. As recycling is not needed for every pair of linear systems, this
means that the improvement in time for those systems where recycling is actually
used is substantially larger (see section 6).

To simplify notation, we drop the superscript j in (1.1). At any particular point
in the sequence of systems, we refer to Ax = b as the primary system and A∗x̃ = b̃ as
the dual system. Throughout the paper, || · || refers to the two-norm, (·, ·) refers to
the standard inner product, and ei is the ith canonical basis vector. Unless otherwise
stated, we refer to the primary system recycle space and the dual system recycle space
collectively as the recycle space.

In the next section, we briefly discuss the BiCG algorithm, and in section 3 we
derive the RBiCG algorithm using a previously computed recycle space. How to
compute or update such a recycle space efficiently is discussed in section 4. After
explaining the basics of interpolatory model reduction, we discuss how RBiCG is
applied in IRKA in section 5. We present numerical experiments and results in section
6 and conclusions in section 7.

2. The BiCG algorithm. For the primary system, let x0 be the initial guess
with residual r0 = b − Ax0. Krylov subspace methods, in general, find approximate
solutions by projection onto the Krylov subspace associated with A and r0 [57]. The
ith solution iterate is given by

xi = x0 + �i,(2.1)

where �i ∈ Ki(A, r0) ≡ span{r0, Ar0, A2r0, . . . , A
i−1r0} is defined by some projec-

tion. The BiCG method defines this projection using the Krylov subspace associated
with the dual system, leading to two bi-orthogonal bases and a pair of three-term or
coupled two-term recurrences. This method is called the bi-Lanczos method [38, 23].
We initialize the Lanczos vectors as follows:

v1 = r0/||r0||, ṽ1 = r̃0/||r̃0||.

Defining Vi = [v1 v2, . . . , vi] and Ṽi = [ṽ1 ṽ2, . . . , ṽi], the (i+1)th Lanczos vectors are
given by

γvi+1 = Avi − Viτ ⊥ Ṽi, γ̃ṽi+1 = A∗ṽi − Ṽi τ̃ ⊥ Vi,

where the scalars γ and γ̃ and the vectors τ and τ̃ are to be determined. This
biorthogonality condition leads to a pair of three-term recurrences (see [47]), so that
computation of the (i + 1)th Lanczos vectors requires only the ith and the (i − 1)th
Lanczos vectors. These 3-term recurrences are called the bi-Lanczos relations, and
they are defined as follows:

AVi = Vi+1T i = ViTi + ti+1,ivi+1e
T
i ,

A∗Ṽi = Ṽi+1T̃ i = ṼiT̃i + t̃i+1,iṽi+1e
T
i ,

where Ti, T̃i are i× i tridiagonal matrices, ti+1,i is the last element of the last row of

T i ∈ C(i+1)×i, and t̃i+1,i is the last element of the last row of T̃ i ∈ C(i+1)×i.
The next step is to find approximate solutions by projection. To exploit the

efficiency of short recurrences in the bi-Lanczos algorithm, we use the biorthogonality
condition to define the projection. This leads to a Petrov–Galerkin approach. Since
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Algorithm 1. BiCG (adapted from [57]).
1. Choose initial guesses x0 and x̃0. Compute r0 = b−Ax0 and r̃0 = b̃−A∗x̃0.
2. if (r0, r̃0) = 0 then initialize x̃0 to a random vector.
3. Set p0 = 0, p̃0 = 0, and β0 = 0. Choose tol and max itn.
4. for i = 1 . . . max itn do
� pi = ri−1 + βi−1pi−1.
� p̃i = r̃i−1 + β̄i−1p̃i−1.
� qi = Api.
� q̃i = A∗p̃i.
� αi = (r̃i−1, ri−1)/(p̃i, qi).
� xi = xi−1 + αipi.
� x̃i = x̃i−1 + ᾱip̃i.
� ri = ri−1 − αiqi.
� r̃i = r̃i−1 − ᾱiq̃i.
� if ||ri|| ≤ tol and ||r̃i|| ≤ tol then break.
� βi = (r̃i, ri)/(r̃i−1, ri−1).
5. end for.

the columns of Vi form a basis for Ki(A, r0), we can define �i in (2.1) as �i = Viyi,
and the biorthogonality (or Petrov–Galerkin) condition then implies

ri = b−A(x0 + �i) = r0 −AViyi ⊥ Ṽi.

The vector yi is defined by this orthogonality condition. The solution iterate for
the dual system, x̃i, is similarly defined by x̃i = x̃0 + Ṽiỹi and r̃i ⊥ Vi. Further
simplifications lead to the standard BiCG algorithm (Algorithm 1) [23, 57].

Next, we briefly discuss the breakdown conditions in BiCG and their remedies [29,
57]. The first breakdown happens when, at any step i, r̃∗i ri = 0. This is a breakdown in
the underlying bi-Lanczos algorithm and is referred to as a serious breakdown. There
exist so-called look-ahead strategies [26, 33] to avoid this breakdown. In addition, the
two-term recurrence for the solution update requires a pivotless LDU decomposition
of the tridiagonal matrix Ti, which may not always exist. This breakdown is referred
to as a breakdown of the second kind, and it can be avoided by performing the LDU
decomposition with 2 × 2 block diagonal elements [8]. The breakdown conditions
in RBiCG are the same, and similar solutions can be applied. Therefore, and for
the sake of brevity, we do not discuss breakdowns for RBiCG separately, and we
will assume henceforth in our derivations that breakdowns do not occur. Note that
extensive experiments show that BiCG works well, and that breakdowns rarely happen
in practice [47, 33].

3. Recycling BiCG: Using a recycle space. In this section, we modify the
BiCG algorithm to use a given recycle space. First, we briefly describe the recycling
idea used in the GCRO-DR algorithm. After solving the jth primary system in
(1.1), GCRO-DR computes the matrices U, C ∈ Cn×k, such that range(U) is an
approximate invariant subspace of A(j), A(j+1)U = C, and C∗C = I. It then computes
an orthogonal basis for the Krylov subspace Ki ((I − CC∗)A, (I − CC∗) r0). This
produces the Arnoldi relation

AVi = CC∗AVi + Vi+1Hi ⇐⇒ (I − CC∗)AVi = Vi+1Hi,
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where Hi is an (i + 1) × i upper Hessenberg matrix. GCRO-DR finds the residual-
minimizing solution over the (direct) sum of the recycle space, range(U), and the new
search space generated, range(Vi).

In RBiCG, we use the matrix U , derived from an approximate right invariant sub-
space of A(j), to define the primary system recycle space and compute C = A(j+1)U .
Similarly, we use the matrix Ũ , derived from an approximate left invariant subspace
of A(j), to define the dual system recycle space and compute C̃ = A(j+1)∗Ũ . Instead
of C being an orthogonal matrix, U and Ũ are computed such that C and C̃ are
biorthogonal; see section 4.3. The number of vectors selected for recycling is denoted
by k, and hence, U , Ũ , C, and C̃ ∈ Cn×k. Next, we derive an augmented bi-Lanczos
algorithm that computes biorthogonal bases for the primal and dual Krylov subspaces.
The two-term recurrence for the solution update in RBiCG is derived in section 3.2.

3.1. The augmented Bi-Lanczos algorithm. The standard bi-Lanczos algo-
rithm computes columns of Vi and Ṽi such that, in exact arithmetic, Vi ⊥b Ṽi, where
⊥b denotes biorthogonality; this implies that Ṽ ∗

i Vi is a diagonal matrix. Since we
recycle spaces U and Ũ , the bi-Lanczos algorithm must be modified to compute the
columns of Vi and Ṽi such that either

(3.1) [U Vi] ⊥b

[
Ũ Ṽi

]
or

(3.2) [C Vi] ⊥b

[
C̃ Ṽi

]
.

We choose to implement (3.2), because it leads to simpler algebra and hence a more
efficient algorithm. It also has the advantage that the RBiCG algorithm has a form
similar to the standard BiCG algorithm. Next, we derive the recurrences that im-
plement (3.2), where C ⊥b C̃ has already been satisfied. The latter relation is easy
to implement when computing the recycle space. Indeed, we can compute C and C̃
such that C̃∗C is a real, positive, diagonal matrix; see section 4.3. As in the BiCG
algorithm, we assume v1 and ṽ1 are available from the initial residuals r0 and r̃0. We
make this statement more precise below. The (i+1)th Lanczos vector for the primary
system is computed by

γvi+1 = Avi − Viτ − Cρ ⊥
[
C̃ Ṽi

]
,(3.3)

where γ, τ , and ρ are to be determined. Combining (3.2) and (3.3), we get the
following equations:

Dcρ = C̃∗Avi,
Diτ = Ṽ ∗

i Avi,
(3.4)

where Di = Ṽ ∗
i Vi and Dc = C̃∗C are both diagonal matrices and Dc has real, positive

coefficients (see section 4.3). As discussed before, a breakdown in the standard BiCG
algorithm because of singular Di can be fixed with look-ahead strategies. Assuming
breakdowns do not occur, we can solve for τ and ρ in (3.4) and choose a normalization
γ; substituting these into (3.3) gives the (i + 1)th Lanczos vector. Because of the
biorthogonality condition (3.2), the full recurrence for vi+1 reduces to a (3 + k)-term
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recurrence, where k is the number of columns of C. This implies that the computation
of the (i+ 1)th Lanczos vector requires the ith and (i− 1)th Lanczos vectors and C.
Similarly, we get a (3 + k)-term recurrence for computing the Lanczos vectors for
the dual system. We refer to this pair of (3 + k)-term recurrences as the augmented
bi-Lanczos relations; they are given by

(I − CĈ∗)AVi = Vi+1T i, (I − C̃Č∗)A∗Ṽi = Ṽi+1T̃ i,(3.5)

where

Ĉ =
[

c̃1
c∗1 c̃1

c̃2
c∗2 c̃2

· · · c̃k
c∗k c̃k

]
= C̃D−∗

c = C̃D−1
c ,

Č =
[

c1
c̃∗1c1

c2
c̃∗2c2

· · · ck
c̃∗kck

]
= CD−1

c .
(3.6)

Using (3.2), we can rewrite (3.5) as

A1Vi = Vi+1T i, where A1 = (I − CD−1
c C̃∗)A(I − CD−1

c C̃∗),

A∗
1Ṽi = Ṽi+1T̃ i, where A∗

1 = (I − C̃D−∗
c C∗)A∗(I − C̃D−∗

c C∗),
(3.7)

since C̃∗Vi = 0 and C∗Ṽi = 0. This new form of the augmented bi-Lanczos relations
simplifies the derivation of the recurrence for the RBiCG solution update, because
the operators (3.7) are each other’s conjugate transpose. Note that the additional
orthogonalizations in (3.7) need not be carried out in an actual algorithm (see Algo-
rithm 3.2).

3.2. The solution update for the augmented bi-Lanczos recurrence. The
ith solution update in the RBiCG algorithm becomes

(3.8) xi = x0 + Uzi + Viyi, x̃i = x̃0 + Ũ z̃i + Ṽiỹi.

With recycling, the biorthogonality condition (3.2) defines the Petrov–Galerkin con-
dition,

(3.9) ri = r0 −AUzi −AViyi ⊥
[
C̃ Ṽi

]
, r̃i = r̃0 −A∗Ũ z̃i −A∗Ṽiỹi ⊥ [C Vi] .

For the remainder of this section, we focus on the primary system. The derivations for
the dual system are analogous. The computation of zi and yi can be implemented more
efficiently than (3.9) suggests. Defining ζ = ||(I−CĈ∗)r0|| and v1 = ζ−1(I−CĈ∗)r0,
we get

(3.10) r0 = CĈ∗r0 +
(
I − CĈ∗

)
r0 = [C Vi+1]

[
Ĉ∗r0
ζe1

]
.

Using the augmented bi-Lanczos relation (3.5) we get

(3.11) A [U Vi]

[
zi
yi

]
= [C Vi+1]

[
I Ĉ∗AVi

0 T i

] [
zi
yi

]
.

Substituting (3.10) and (3.11) in (3.9) gives

(3.12)

[
C̃∗

Ṽ ∗
i

]
[C Vi+1]

( [
Ĉ∗r0
ζe1

]
−
[

I Ĉ∗AVi

0 T i

] [
zi
yi

] )
= 0.
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Using the biorthogonality condition (3.2) in the above equation we get1

(3.13)

[
Ĉ∗r0
ζe1

]
−
[

I Ĉ∗AVi

0 Ti

] [
zi
yi

]
= 0.

Therefore, yi and zi are given by

Tiyi = ζe1,

zi = Ĉ∗r0 − Ĉ∗AViyi.
(3.14)

Substituting (3.14) in (3.8) leads to the following solution update:

xi = x0 + UĈ∗r0 + (I − UĈ∗A)Viyi,

where yi is obtained from solving Tiyi = ζe1. All computations here are done with
matrix-vector products and UĈ∗A is not computed explicitly.

We introduce a slight change of notation to make future derivations simpler. Let
x−1 and x̃−1 be the initial guesses and let r−1 = b − Ax−1 and r̃−1 = b̃ − A∗x̃−1 be
the corresponding initial residuals. We define

x0 = x−1 + UĈ∗r−1, r0 = (I − CĈ∗)r−1,

x̃0 = x̃−1 + Ũ Č∗r̃−1, r̃0 = (I − C̃Č∗)r̃−1,
(3.15)

and follow this convention for x0, x̃0, r0, and r̃0 for the rest of this paper. Let

Ti = LiDiRi,

Gi = (I − UĈ∗A)ViR
−1
i ,

ϕi = ζD−1
i L−1

i e1.

As in the standard BiCG algorithm, an LDU decomposition (without pivoting) of Ti

might not always exist. We can avoid this breakdown in the same way as done for
BiCG (see section 2). The two-term recurrence for the solution update of the primary
system is now given by

xi = xi−1 + ϕi,iGiei for i ≥ 1,

where ϕi,i is the last entry of the vector ϕi, and x0 is given by (3.15). An analogous
update can be derived for the dual system. Note that we never compute any explicit
matrix inverse. The matrices under consideration, Di, Li, and Ri, are diagonal, lower
triangular, and upper triangular, respectively.

This two-term recurrence can be simplified such that Ti is not needed explicitly.
To derive further simplifications, we use the operator A1 (instead of A) and follow
steps similar to the ones used in the derivation of BiCG [33]. Algorithm 2 provides an
outline of RBiCG. Some algorithmic improvements to make the code faster are not
given here; see [3] for further details.

1Note that the length of the vector e1 in (3.13) is one less than that of e1 in (3.12), although
both denote the first canonical basis vector. Also, Ti in (3.13) is T i without the last row, and hence
is an i× i tridiagonal matrix.
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Algorithm 2. RBiCG.
1. Given U and Ũ , compute Č and Ĉ using (3.6). If U and Ũ are not available, then
initialize U , Ũ , Č, and Ĉ to empty matrices.
2. Choose x−1, x̃−1 and compute x0, x̃0, r0, and r̃0 using (3.15).
3. if (r0, r̃0) = 0 then initialize x̃−1 to a random vector.
4. Set p0 = 0, p̃0 = 0, and β0 = 0. Choose tol and max itn.
5. for i = 1 . . . max itn do
� pi = ri−1 + βi−1pi−1; p̃i = r̃i−1 + β̄i−1p̃i−1

� zi = Api; z̃i = A∗p̃i
� ζi = Ĉ∗zi; ζ̃i = Č∗z̃i
� qi = zi − Cζi; q̃i = z̃i − C̃ζ̃i
� αi = (r̃i−1, ri−1)/(p̃i, qi); α̃i = ᾱi

� ζc = ζc + αiζi; ζ̃c = ζ̃c + α̃iζ̃i
� xi = xi−1 + αipi; x̃i = x̃i−1 + α̃ip̃i
� ri = ri−1 − αiqi;; r̃i = r̃i−1 − α̃iq̃i
� if ||ri|| ≤ tol and ||r̃i|| ≤ tol then break
� βi = (r̃i, ri)/(r̃i−1, ri−1)

6. end for
7. xi = xi − Uζc; x̃i = x̃i − Ũ ζ̃c.

4. Recycling BiCG: Computing a recycle space. We use the matrices U
and Ũ to define the primary and dual system recycle spaces. The recycle space used
in solving a linear system is fixed throughout the RBiCG iteration; however, the basis
of the recycle space for the next pair of linear systems is updated periodically using
the bi-Lanczos vectors. We use harmonic Ritz vectors, with respect to the current
Krylov subspace, to approximate left- and right-invariant subspaces cheaply.

We use the following definition [43]. Let S be a subspace of Cn. Then λ ∈ C is a
harmonic Ritz value of A and 0 
= u ∈ S its corresponding harmonic Ritz vector with
respect to the subspace W = AS if

(4.1) (Au − λu) ⊥ AS.

In section 4.1, we derive a small generalized eigenvalue problem whose solution gives
the desired approximate invariant subspace. The first pair of systems in our sequence
of dual linear systems requires special attention, since there is no recycle space avail-
able at the start. We discuss this case in section 4.2. In section 4.3, we describe the
construction of the biorthogonal C and C̃ in (3.2) such that Dc = C̃∗C has positive
real coefficients. Although, the generalized eigenvalue problem derived in section 4.1
is of a small dimension, it would be expensive to set up in a straightforward manner.
We show how to set up the problem efficiently using recurrences in section 4.4.

4.1. Computing an approximate invariant subspace. We need a sequence
of consecutive Lanczos vectors vi and ṽi and tridiagonal matrices Ti and T̃i to build
the recycle space. There is a degree of freedom in choosing the scaling of the Lanczos
vectors [29, 33, 47]. The following scaling yields T̃i = T ∗

i (using (3.7) and (4.2)):

(4.2) ||vi|| = 1, (vi, ṽi) = 1.

Hence, the Lanczos vectors are computed as follows:

vi =
ri−1

||ri−1|| , ṽi =
r̃i−1

(vi, r̃i−1)
.
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Ti can be computed using the residuals and iteration scalars of the RBiCG iteration
as follows [2, 3]:

Ti =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
α1

− ||r0||
||r1|| ·

β1

α1

− ||r1||
||r0|| · 1

α1

1
α2

+ β1

α1
− ||r1||

||r2|| ·
β2

α2

· · ·
. . . − ||ri−2||

||ri−1|| ·
βi−1

αi−1

− ||ri−1||
||ri−2|| · 1

αi−1

1
αi

+ βi−1

αi−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Instead of using all the Lanczos vectors to update the recycle space, we update the
recycle space periodically. This strategy keeps the memory requirements modest [59],
as it allows us to discard Lanczos vectors periodically. The iteration process between
two updates of the recycle space is referred to as a “cycle.” The length of the cycle,
s, refers to the number of iterations between updates. Let Vj and Ṽj contain the
Lanczos vectors generated during the jth cycle,

Vj =
[
v(j−1)s+1, . . . , vjs

]
, Ṽj =

[
ṽ(j−1)s+1, . . . , ṽjs

]
.

Also, let

Υj =
[
v(j−1)s Vj vjs+1

]
, Υ̃j =

[
ṽ(j−1)s Ṽj ṽjs+1

]
,

where v(j−1)s and ṽ(j−1)s are the last Lanczos vectors from the previous cycle, and
vjs+1 and ṽjs+1 are the first Lanczos vectors from the next cycle. The augmented
bi-Lanczos relations for the jth cycle are now given by

(I − CĈ∗)AVj = ΥjΓj, (I − C̃Č∗)A∗Ṽj = Υ̃j Γ̃j ,(4.3)

where Γj , Γ̃j ∈ C
(s+2)×s are Tj , T̃j, respectively, with an extra row at the top (cor-

responding to v(j−1)s and ṽ(j−1)s) and at the bottom (corresponding to vjs+1 and
ṽjs+1).

The discussion in this paragraph concerns only the primary system. However,
an analogous discussion applies to the dual system. Let U define the recycle space
available from the previous linear system and let Uj−1 be the recycle space generated
at the end of cycle (j − 1) for the current linear system. We want to obtain an
improved Uj from Vj , Uj−1, and U . It is important to note that Uj is not used for
solving the current linear system. At the end of solving the current linear system, the
final Uj will be U for the next linear system. There are several choices for selecting
Uj [59]. For simplicity, we build Uj from range ([Uj−1 Vj ]).

Based on the choices discussed in the previous two paragraphs, we first define
certain matrices, and then we derive the generalized eigenvalue problem whose solution
gives the approximate invariant subspace. Let

Φj = [Uj−1 Vj ] , Ψj = [C Cj−1 Υj] , Hj =

⎡
⎣ 0 Bj

I 0
0 Γj

⎤
⎦ ,

Φ̃j =
[
Ũj−1 Ṽj

]
, Ψ̃j =

[
C̃ C̃j−1 Υ̃j

]
, H̃j =

⎡
⎣ 0 B̃j

I 0

0 Γ̃j

⎤
⎦ ,D
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where Cj−1 = AUj−1, Bj = Ĉ∗AVj , C̃j−1 = A∗Ũj−1, and B̃j = Č∗A∗Ṽj . Then, the
augmented bi-Lanczos relations (4.3) lead to

AΦj = ΨjHj , A∗Φ̃j = Ψ̃jH̃j .(4.4)

In RMINRES [59], harmonic Ritz pairs of A with respect to the subspace range(AΦj)
have been successfully used to build the recycle space. Since we work in a Petrov–
Galerkin framework, it is more intuitive to use harmonic Ritz pairs with respect to
the subspace range(A∗Φ̃j), following [9]. This leads to simpler algebra and cheaper
computations. Let (λ, u) denote a harmonic Ritz pair of A. Then, we derive λ and
u ∈ range(Φj) from the condition

(4.5) (Au− λu) ⊥ range
(
A∗Φ̃j

)
.

Taking u = Φjw and substituting (4.4) in (4.5) gives(
A∗Φ̃j

)∗
AΦjw = λ

(
A∗Φ̃j

)∗
Φjw ⇔

(
Ψ̃jH̃j

)∗
ΨjHjw = λ

(
Ψ̃jH̃j

)∗
Φjw.

Thus, condition (4.5) leads to the generalized eigenvalue problem,

(4.6) H̃∗
j Ψ̃

∗
jΨjHjw = λH̃∗

j Ψ̃
∗
jΦjw.

Let the columns of Wj be the k right eigenvectors corresponding to the eigenvalues
closest to the origin. Then, we take Uj = ΦjWj . See [3] for an analogous derivation
of the dual system recycle space.

4.2. The first linear system and the first cycle. For the first cycle of the
first system, the matrices U , Ũ , Uj−1, and Ũj−1 are not available. Letting T1 and T̃1

denote the tridiagonal matrices for the first cycle, we consider the following eigenvalue
problems:

T1w = λw, T̃1w̃ = μw̃.

Since T̃1 = T ∗
1 , we solve for the left and the right eigenvectors of T1, W̃1 and W1,

respectively. Hence, we take

U1 = V1W1, Ũ1 = Ṽ1W̃1.

During the second and subsequent cycles of the first linear system, Uj−1 and

Ũj−1 are available, but C and C̃ are not. Redefining Ψj, Ψ̃j , Hj , and H̃j , we get the
generalized eigenvalue problem (4.6) with

Φj = [Uj−1 Vj ] , Ψj = [Cj−1 Υj] , Hj =

[
I 0
0 Γj

]
,

Φ̃j =
[
Ũj−1 Ṽj

]
, Ψ̃j =

[
C̃j−1 Υ̃j

]
, H̃j =

[
I 0

0 Γ̃j

]
.

For the first cycle of each of the subsequent linear systems (i.e., j = 1), C and C̃
are available, while Uj−1 and Ũj−1 are not. Redefining Φ1, Φ̃1,Ψ1, Ψ̃1, H1, and H̃1,
we get the generalized eigenvalue problem (4.6) with

Φ1 = [U V1] , Ψ1 = [C V 1] , H1 =

[
I B1

0 T 1

]
,

Φ̃1 =
[
Ũ Ṽ1

]
, Ψ̃1 =

[
C̃ Ṽ 1

]
, H̃1 =

[
I B̃1

0 T̃ 1

]
,

where V 1 and Ṽ 1 denote [V1 vs+1] and [Ṽ1 ṽs+1], respectively.
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4.3. Constructing biorthogonal Cj, C̃j and C, C̃. We need to compute

the matrices Cj and C̃j such that Cj ⊥b C̃j at the end of each cycle. After solving

the generalized eigenvalue problem (4.6), we set (as initial choice) Uj = ΦjWj , Ũj =

Φ̃jW̃j , Cj = AUj , and C̃j = A∗Ũj, and we compute the SVD

(4.7) C̃∗
jCj = MjΣjN

∗
j ,

such that σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. Given some tolerance tol > 0, we pick p
such that σp ≥ tol > σp+1 (with both p = k and p = 0 possible), and redefine
Mj = [m1, . . . ,mp] and Nj = [n1, . . . , np], where mi and ni are the left and right
singular vectors corresponding to σi. Next, we redefine

Uj = ΦjWjNj = [Uj−1 Vj ]WjNj, Ũj = Φ̃jW̃jMj = [Ũj−1 Ṽj ]W̃jMj,

Cj = AUj = A[Uj−1 Vj ]WjNj, C̃j = A∗Ũj = A∗[Ũj−1 Ṽj ]W̃jMj .
(4.8)

By construction C̃∗
jCj is diagonal with real, positive coefficients.2

Analogous to the above, at the start of each linear system (after the first), we need
to compute C and C̃ such that C ⊥b C̃ (cf. (3.2)), and the diagonal matrix Dc = C̃∗C
has real, positive coefficients. Taking initially for U and Ũ the final matrices Uj and

Ũj from the previous pair of linear systems, we compute C = AU , C̃ = A∗Ũ , and

compute the SVD C̃∗C = MΣN∗. After this we proceed as for the computation of
Cj and C̃j .

4.4. Efficiently setting up the generalized eigenvalue problem. The main
cost of setting up the generalized eigenvalue problem (4.6) is in computing the matrices

Ψ̃∗
jΨj =

⎡
⎣ C̃∗

C̃∗
j−1

Υ̃∗
j

⎤
⎦ [

C Cj−1 Υj

]
=

⎡
⎣ Dc C̃∗Cj−1 0

C̃∗
j−1C Σj−1 C̃∗

j−1Υj

0 Υ̃∗
jCj−1 I

⎤
⎦ ,

Ψ̃∗
jΦj =

⎡
⎣ C̃∗

C̃∗
j−1

Υ̃∗
j

⎤
⎦ [

Uj−1 Vj

]
=

⎡
⎣ C̃∗Uj−1 0

C̃∗
j−1Uj−1 C̃∗

j−1Vj

Υ̃∗
jUj−1 I

⎤
⎦ ,

where I is the s × s identity matrix with an extra row of zeros at the top and at
the bottom. Most of the blocks in these matrices can be constructed efficiently by
exploiting recurrences and various algebraic relations.

The biorthogonality condition (3.2) and the construction of Cj and C̃j (4.7)–(4.8)
give the following orthogonality relations:

(4.9) C̃j−2 ⊥ Υj , Cj−2 ⊥ Υ̃j.

Next, going from top-to-bottom and left-to-right, we analyze each block of Ψ̃∗
jΨj and

Ψ̃∗
jΦj in terms of its defining recurrences and simplify it using (3.2), (4.3), (4.7), (4.8),

2For p = 0, no recycle space would be selected. This has never occurred in our experience.
Indeed, discarding even one pair of vectors is rare. In our experiments, we use tol = 10−6; see
section 6.2.
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and (4.9). Blocks whose efficient computation is obvious or has already been detailed
are skipped, and we focus on computations that are at least O(n):

• C̃∗Cj−1 = C̃∗AUj−1 =
[
C̃∗AUj−2 C̃∗AVj−1

]
Wj−1Nj−1

=
[
C̃∗Cj−2 C̃∗

(
CĈ∗AVj−1 +Υj−1Γj−1

) ]
Wj−1Nj−1

=
[
C̃∗Cj−2 DcBj−1

]
Wj−1Nj−1.

For this first block, we describe its efficient computation in some detail. The cost
of computing C̃∗Cj−1 by direct multiplication is O(k2n); so, it would be expensive.

However, the submatrix C̃∗Cj−2 is available from the previous cycle, and Dc is a
diagonal matrix independent of the cycle (so both must be computed at most once
per linear system). Furthermore, Bj−1 has been computed during the (augmented)

bi-Lanczos iteration. Finally, the matrix-matrix product [C̃∗Cj−2 DcBj−1]Wj−1Nj−1

does not involve anyO(n) operation. Hence, this block can be computed quite cheaply.
We give a brief overview of the cost of the RBiCG algorithm in section 6; for a more
detailed derivation, see [4].

• C̃∗
j−1C = M∗

j−1W̃
∗
j−1

[
C̃∗

j−2C

B̃∗
j−1Dc

]
.

The derivation of this block is similar to the previous block. As above, C̃∗
j−2C is

available from the previous cycle, and B̃j−1 has been computed during the bi-Lanczos
iteration.

• C̃∗
j−1Υj = Ũ∗

j−1AΥj = M∗
j−1W̃

∗
j−1

[
Ũ∗
j−2

Ṽ ∗
j−1

]
AΥj = M∗

j−1W̃
∗
j−1

[
0

Ṽ ∗
j−1AΥj

]

= M∗
j−1W̃

∗
j−1

[
0[

C̃Č∗A∗Ṽj−1 + Υ̃j−1Γ̃j−1

]∗
Υj

]

= M∗
j−1W̃

∗
j−1

[
0

Γ̃∗
j−1Υ̃

∗
j−1Υj

]
,

where

Γ̃∗
j−1Υ̃

∗
j−1Υj = Γ̃∗

j−1

⎡
⎢⎢⎢⎢⎢⎢⎣

ṽ∗(j−2)s

ṽ∗(j−2)s+1

...
ṽ∗(j−1)s

ṽ∗(j−1)s+1

⎤
⎥⎥⎥⎥⎥⎥⎦
[
v(j−1)s v(j−1)s+1 · · · vjs vjs+1

]

= Γ̃∗
j−1

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ .
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• Υ̃∗
jCj−1 =

[
0 Υ̃∗

jΥj−1Γj−1

]
Wj−1Nj−1, where

Υ̃∗
jΥj−1Γj−1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦Γj−1.

The derivation of this block is similar to that of the previous block.

• C̃∗Uj−1 = C̃∗ [ Uj−2 Vj−1

]
Wj−1Nj−1 =

[
C̃∗Uj−2 0

]
Wj−1Nj−1,

where C̃∗Uj−2 is available from the previous cycle (such a block must be computed
at most once per linear system).

• C̃∗
j−1Uj−1 = M∗

j−1W̃
∗
j−1

[
Ũ∗
j−2

Ṽ ∗
j−1

]
A
[
Uj−2 Vj−1

]
Wj−1Nj−1

= M∗
j−1W̃

∗
j−1

[
C̃∗

j−2Uj−2 C̃∗
j−2Vj−1

Ṽ ∗
j−1Cj−2 Ṽ ∗

j−1AVj−1

]
Wj−1Nj−1,

where C̃∗
j−2Uj−2 and C̃∗

j−2Vj−1 are submatrices of Ψ̃∗
j−1Φj−1, Ṽ

∗
j−1Cj−2 is a submatrix

of Υ̃∗
j−1Cj−2 and is available from Ψ̃∗

j−1Ψj−1, and Ṽ ∗
j−1AVj−1 = T̃j−1.

• C̃∗
j−1Vj is a submatrix of C̃∗

j−1Υj , and hence, is available from Ψ̃∗
jΨj.

Therefore, only Υ̃∗
jUj−1 needs to be computed explicitly.

5. Model reduction. Consider a single-input/single-output (SISO) linear time-
invariant (LTI) system represented as

G :

{
E ẋ(t) = Ax(t) + bv(t),

y(t) = c∗x(t),
or G(s) = c∗(sE −A)−1b,(5.1)

where E,A ∈ Rn×n and b, c ∈ Rn. The time-dependent functions v(t), y(t): R → R

are the input and output of G(s), respectively, and x(t) : R → Rn is the associated
state. In (5.1), G(s) is the transfer function of the system: Let V (s) and Y (s) denote
the Laplace transforms of v(t) and y(t), respectively. Then, the transfer function
G(s) satisfies Y (s) = G(s)V (s). By a common abuse of notation, we denote both the
underlying dynamical system and its transfer function with G. The dimension of the
underlying state-space, n, is called the dimension of G. Systems of the form (5.1)
with extremely large state-space dimension n arise in many applications; see [6] and
[37] for a collection of such examples. Simulations in such large scale settings lead
to overwhelming demands on computational resources. This is the main motivation
for model reduction. The goal is to produce a surrogate model of much smaller
dimension which provides a high-fidelity approximation of the input-output behavior
of the original model G. Let r  n denote the order of the reduced model. The
reduced model is represented, similar to (5.1), as

Gr(s) :

{
Er ẋr(t) = Arxr(t) + brv(t),

yr(t) = c∗rxr(t),
or Gr(s) = c∗r(sEr −Ar)

−1br,(5.2)
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where Er, Ar ∈ Rr×r and br, cr ∈ Rr. In this setting, the common approach is
to construct reduced-order models via a Petrov–Galerkin projection. This amounts
to choosing two r-dimensional subspaces Vr and Wr and matrices Vr ∈ Rn×r and
Wr ∈ Rn×r such that Vr = Range(Vr) and Wr = Range(Wr). Then, we approximate
the full-order state x(t) as x(t) ≈ Vrxr(t) and enforce the Petrov–Galerkin condition,

W ∗
r (EVrẋr(t)−AVrxr(t)− b v(t)) = 0, yr(t) = c∗Vrxr(t),

leading to a reduced-order model as in (5.2) with

(5.3) Er = W ∗
r EVr , Ar = W ∗

r AVr , br = W ∗
r b, and cr = V ∗

r c.

As (5.3) illustrates, the quality of the reduced model depends solely on the selection
of the two subspaces, Vr and Wr. In this paper, we will choose Vr and Wr to enforce
interpolation. For other selections of Vr and Wr, we refer the reader to [6].

5.1. Interpolatory model reduction. For a given full-order model G(s), the
goal of interpolatory model reduction is to construct a reduced-order model Gr(s) via
rational interpolation. Here, we focus on Hermite interpolation: given the full-order
model (5.1) and a collection of interpolation points (also called shifts) σi ∈ C, for
i = 1, . . . , r, we must construct a reduced-order system by projection as in (5.3) such
that Gr(s) interpolates G(s) and its first derivative at selected interpolation points,
i.e.,

G(σi) = Gr(σi) and G′(σi) = G′
r(σi) for i = 1, . . . , r.

Rational interpolation by projection was first proposed in [19, 61, 62]. How to obtain
the required projection was derived in [30] using the rational Krylov method [46]. For
the special case of Hermite rational interpolation, the solution of the interpolatory
model reduction problem is given in Theorem 5.1. For the more general case, we refer
the reader to [30] and the recent survey [7].

Theorem 5.1. Given G(s) = c∗(sE−A)−1b and r distinct points σ1, . . . , σr ∈ C,
let

(5.4) Vr = [(σ1E −A)−1b, . . . , (σrE −A)−1b], W ∗
r =

⎡
⎢⎣
c∗(σ1E −A)−1

...
c∗(σrE −A)−1

⎤
⎥⎦ .

Using (5.3), define the reduced-order model Gr(s) = c∗r(sEr−Ar)
−1br. Then G(σi) =

Gr(σi) and G′(σi) = G′
r(σi), for i = 1, . . . , r, provided that σiE − A and σiEr − Ar

are invertible for i = 1, . . . , r.
Theorem 5.1 shows how to solve the interpolatory model reduction problem via

projection for given shifts. However, it does not provide a strategy for choosing good/
optimal interpolation points. Recently, this issue has been resolved for the special case
of optimality in the H2 norm [32]. The H2 norm of the dynamical system G(s) is
defined as

‖G‖H2
=

(
1

2π

∫ ∞

−∞
| G(ja) |2 da

)1/2

,

where j =
√−1. The H2 norm of G is the 2 − ∞ induced norm of the underlying

convolution operator from input v to output y, so that for any input v ∈ L2(R+),
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Algorithm 3. IRKA ( [32]).
1. Make an initial shift selection σi for i = 1, . . . , r,
2. Vr = [(σ1E −A)−1b, . . . , (σrE −A)−1b],
3. Wr = [(σ1E −A)−∗c, . . . , (σrE −A)−∗c],
4. while (not converged)
� Ar = W ∗

r AVr , Er = W ∗
r EVr,

� σi ← −λi(Ar, Er) for i = 1, . . . , r,
� Vr = [(σ1E −A)−1b, . . . , (σrE −A)−1b],
� Wr = [(σ1E −A)−∗c, . . . , (σrE −A)−∗c],
5. Ar = W ∗

r AVr , Er = W ∗
r EVr , br = W ∗

r b, cr = V ∗
r cr.

‖y − yr‖L∞ ≤ ‖G− Gr‖H2‖v‖L2. To ensure that the output error y − yr is small in
L∞(R+) uniformly over all inputs v, say, with ‖v‖L2 ≤ 1, we seek a reduced system
Gr that makes ‖G − Gr‖H2 small. This leads to the optimal H2 model reduction
problem: Given G(s), and a reduced-order r < n, find Gr(s) that solves

(5.5) ‖G−Gr‖H2 = min
dim(Ĝr)=r

∥∥∥G− Ĝr

∥∥∥
H2

.

This problem has been studied extensively [39, 60, 32, 52, 58, 31, 10, 11]. It is a
nonconvex optimization problem, which makes finding the global minimum, at best,
a hard task. Hence, the common approach is to construct reduced-order models
that satisfy, for an interpolatory model reduction framework, the following first-order
necessary conditions.

Theorem 5.2 (see [39, 32]). Given G(s), let Gr(s) = c∗r(sEr − Ar)
−1br be an

H2-optimal reduced-order model of order r, with distinct poles λ̂1, . . . , λ̂r. Then

(5.6) G(−λ̂i) = Gr(−λ̂i) and G′(−λ̂i) = G′
r(−λ̂i) for i = 1, . . . , r.

So, the H2 optimal approximant Gr(s) is a Hermite interpolant to G(s) at the mirror
image of its poles. These poles, the optimal interpolation points, are not known a
priori. Hence, IRKA [32], starting from an initial selection of interpolation points,
iteratively corrects the interpolation points until (5.6) is satisfied. Algorithm 3 outlines
IRKA; for details, see [32].

5.2. Advantages of approximating solutions using a Petrov–Galerkin
framework in interpolatory model reduction. The main cost in IRKA is solving
multiple linear systems to compute Vr and Wr. If the dimension of the state-space, n,
is large, these systems are generally solved only approximately by an iterative solver.
In this context, it is important to assess the accuracy of the computed reduced-order
model, that is, given the shifts, how accurately the Hermite interpolation problem
is solved. This question was studied extensively in [12]. One of the major results,
outlined below for our particular case, provides the main motivation for solving the
linear systems associated with the corresponding columns of Vr and Wr as pairs of
dual linear systems (in the terminology of section 1) using BiCG or RBiCG.

Let v̂i and ŵi, for i = 1, . . . , r, denote the approximate solutions of (σiE−A)vi = b
and (σiE − A)∗wi = c, respectively, with residuals ηi = (σiE − A)v̂i − b and ξi =
(σiE − A)∗ŵi − c. Furthermore, let v̂i, ŵi, ηi, and ξi satisfy the Petrov–Galerkin
condition that there exist spaces P and Q such that v̂i ∈ P , ŵi ∈ Q, ηi ⊥ Q, and
ξi ⊥ P . Define the approximate solution matrices (V̂r and Ŵr), the residual matrices
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(Rb and Rc), and the rank-2r matrix (F2r) as follows:

V̂r = [v̂1 v̂2, . . . , v̂r], Ŵr = [ŵ1 ŵ2, . . . , ŵr],
Rb = [η1 η2, . . . , ηr], Rc = [ξ1 ξ2, . . . , ξr],

F2r = Rb(Ŵ
∗
r V̂r)

−1Ŵ ∗
r + V̂ ∗

r (Ŵ
∗
r V̂r)

−1Rc.

Also, define the inexact reduced-order order quantities

Âr = Ŵ ∗
r AV̂r , Êr = Ŵ ∗

r EV̂r , b̂r = Ŵ ∗
r b, and ĉr = V̂ ∗

r c.

Then, the computed reduced-order model Ĝr(s) = ĉ∗r(sÊr − Âr)
−1b̂r exactly interpo-

lates the perturbed full-order model Ĝ(s) = c∗(sE − (A+ F2r))
−1b, i.e.,

Ĝ(σi) = Ĝr(σi) and Ĝ′(σi) = Ĝ′
r(σi) for i = 1, . . . , r.

Hence, iteratively solving the linear systems while satisfying the Petrov–Galerkin
condition above yields a backward error for the interpolatory model reduction that is
bounded by ‖F2r‖, which is governed by the norms of the residuals. The latter are
easily controlled in the iterative solver. For details, we refer the reader to [12].

The easiest way to satisfy the Petrov–Galerkin condition above is by solving the
dual pairs of linear systems using BiCG. Hence, BiCG is particularly suitable for
solving the linear systems in IRKA (even for symmetric positive definite matrices).
However, as IRKA leads to a sequence of dual linear systems, the RBiCG algorithm
can be used to reduce the total run time for solving all linear systems. Moreover,
if we solve the dual pairs of linear systems arising in IRKA by RBiCG, the Petrov–
Galerkin condition is still satisfied. Hence, the resulting reduced-order model will be
an optimal H2 approximation to a nearby full-order model.

5.3. IRKA using RBiCG. IRKA usually converges fast [32], and after the first
few steps of IRKA the updates to the interpolations points are modest. Moreover, for
many cases, the (ordered) σi also change modestly from one column of Vr (and Wr)
to the next. So, we expect IRKA to gain significantly from recycling.

For the special case of E = I in (5.1), alternative solution approaches might be
advantageous, as one can solve the linear systems for multiple shifts at once [24, 28,
35, 55]. Effective strategies for Krylov subspace recycling for solving systems of this
type for multiple shifts at once (and for multiple right-hand sides) were discussed
in [36]. For most model reduction applications, however, E 
= I.

We consider three strategies for recycling Krylov subspaces in IRKA. For the first
strategy, consider iterations m and m+1 in IRKA (the while loop Algorithm 3), with

shifts σ
(m)
i and σ

(m+1)
i , for i = 1, . . . , r and linear systems,

(5.7)
V

(j)
r = [(σ

(j)
1 E −A)−1b, . . . , (σ

(j)
r E −A)−1b],

W
(j)
r = [(σ

(j)
1 E −A)−∗c, . . . , (σ

(j)
r E −A)−∗c],

for j = m or j = m + 1. We recycle Krylov subspaces from the ith column of

V
(m)
r and W

(m)
r to the ith column of V

(m+1)
r and W

(m+1)
r . That is, from solving the

pair of linear systems (σ
(m)
i E − A)v

(m)
i = b and (σ

(m)
i E − A)∗w(m)

i = c to solving

(σ
(m+1)
i E − A)v

(m+1)
i = b and (σ

(m+1)
i E − A)∗w(m+1)

i = c for each i = 1, 2, . . . , r.
This recycling strategy is effective when the change in a shift from one IRKA step
to the next is small. For the second strategy, in a single IRKA step, we recycle
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selected Krylov subspaces from solving for one pair of columns of Vr and Wr to
the next pair of columns across all the columns of the matrices Vr and Wr . For
the third strategy, the first two recycling strategies are combined. Consider solving

the system (σ
(m+1)
i E − A)v

(m+1)
i = b and its dual system. From a set of previously

generated recycle spaces (distinguished by their shifts), we pick the recycle space from
the system with the smallest relative change in σ (and less than a relative tolerance).
This ensures that the linear system that generated the recycle space is close to the
current one. A natural pool from which to pick the σ defining the recycle space would

be {σ(m)
1 , . . . , σ

(m)
r , σ

(m+1)
1 , . . . , σ

(m+1)
i−1 }. The second and third recycling strategies

are effective when the shifts at an IRKA step are clustered.
For the experiments in this paper, r is small, and so the shifts at any particular

IRKA step are spread far apart. Hence, we follow the first strategy. That is, for
every shift, we recycle Krylov subspaces from one IRKA step to the next. In general,
the linear systems corresponding to the relatively large shifts converge fast, and so
recycling Krylov subspaces is not useful for them. Therefore, we carry out recycling
only for selected, small shifts. We give more details in section 6.2.

5.4. Previous work in recycling for model reduction. Recycling for in-
terpolatory model reduction in the Galerkin setting, i.e., with Wr = Vr, has been
considered in [14] and [22]. In this setting, there are no dual systems to solve, and
therefore approaches based on GCR [21] and GMRES [48] are considered, respectively,
for a sequence of (single) linear systems, as opposed to our approach based on BiCG
for a sequence of dual linear systems. Also in other respects, the approach for im-
proving the linear solver and the model reduction context is quite different from what
we focus on in this paper. In [14], the focus is on efficiently solving linear systems
with a fixed coefficient matrix and multiple right-hand sides (Ax(j) = b(j)), recycling
descent vectors (in GCR). Furthermore, the authors target model reduction with a
single interpolation point but interpolating higher derivatives.

6. Results. We first give a brief overview of the overhead in RBiCG. We focus
on components with at least O(n) cost, where n is the dimension of the linear system.
Furthermore, k is the number of basis vectors in the primal (or dual) recycle space,
and s is the number of iterations in a cycle. For every iteration, there is an extra cost
of (8k + 2)n flops, mostly from orthogonalizations. At the end of each cycle, there is
an extra cost of (14k2+6ks+16k+4)n flops, mostly from setting up the generalized
eigenvalue problem and computing biorthogonal Cj and C̃j . Once per linear system,
there is an extra cost of (10k2+28k+14)n flops, mostly from computing biorthogonal
C and C̃. A more detailed discussion of the overhead is given in [4]. Note that s and
k are much smaller than n. For recycling to be beneficial, the savings in iterations
should be sufficient to make up for the overhead. Further in this section, we show
that the reduction in the number of iterations for (a pair of) linear systems may be
as high as 70%. For our model reduction test problem, we show that computing a
reduced model without recycling takes about 50% more time than with recycling.

We test RBiCG on a convection-diffusion problem and on IRKA for interpolatory
model reduction. All experiments are done using MATLAB.

6.1. Convection-diffusion. To analyze RBiCG, we use the linear system ob-
tained by finite difference discretization of the partial differential equation

−(Aϑx)x − (Aϑy)y + B(x, y)ϑx = F ,
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with A as shown in Figure 6.1 (a), B(x, y) = 2e2(x
2+y2), and F = 0 everywhere except

in a small square in the center where F = 100 [56]; see Figure 6.1(a). The domain is
(0, 1)× (0, 1) with Dirichlet boundary conditions

ϑ(0, y) = ϑ(1, y) = ϑ(x, 0) = 1 and ϑ(x, 1) = 0.

We use the second order central difference scheme with a mesh width of h = 1/64, giv-
ing a nonsymmetric linear system of 3969 unknowns. The convergence improvement
by recycling is similar for a problem that is four times larger. To enable further anal-
ysis, we give results for this smaller system size. The primary system right-hand side
comes from the PDE. We take the vector of all zeros as the dual system right-hand
side. In this case, we are concerned only about the primary system.

To analyze RBiCG, we solve the (same) dual linear systems four times. The re-
cycle space generated during the first run is used for solving the same dual systems
a second time, further improving the recycle space, and so on. This is a useful ap-
proach for analyzing how well Krylov subspace recycling works, as it excludes the
effects of changing matrices and of right-hand sides having different expansions in the
eigenvector basis [44]. Hence, it provides an indication for reasonable sequences of
systems of how fast the recycle spaces converge and how much recycling approximate
invariant subspaces is likely to improve convergence. For this experiment, we take
s = 40 and k = 10. These are chosen based on experience with other recycling algo-
rithms [44, 59]. The relative tolerance for RBiCG is taken as 10−8. The initial guess
(for both systems) is a vector of all ones. The linear systems are split-preconditioned
by a Crout version of the ILUT preconditioner with a drop tolerance of 0.05 [47]. The
generated recycle spaces pertain to the preconditioned linear systems.

Figure 6.1(b) shows the convergence improvement of RBiCG, as it solves the
primary system multiple times. For the second run, the reduction in iterations is
around 35%. The convergence improves further with each run. Next, we present a
brief analysis of the generated recycle spaces. In Table 6.1, we give the cosines of
the principal angles between the primary (dual) recycle space and the right (left)
invariant subspace associated with the eight eigenvalues of smallest magnitude. As
for the recycle spaces, the invariant subspaces are computed for the preconditioned
operator. As the recycle space improves, the principal angles tend to zero, and so the
cosines tend to one. The table shows that with only a few runs, RBiCG accurately
approximates increasingly larger subspaces of the invariant subspace. As a result, we
see faster convergence for every new run.

6.2. Model reduction. Our test dynamical system is a semidiscretized heat
transfer problem for determining the optimal cooling of steel profiles [45, 13, 50]. We
will refer to this model as the rail model [45]. The rail model has seven inputs and six
outputs. Since we focus on SISO systems in this paper, we choose a SISO subsystem
corresponding to the second input and sixth output. The rail model is available with
1357, 5177, 20209, and 79841 unknowns, depending on the mesh size.

As convergence tolerance for IRKA we use a relative change in the shifts of less
than 10−6. The matrices A and E of (5.1) are symmetric negative definite and sym-
metric positive definite (SPD), respectively. Since our shifts are real and positive at

every IRKA step, (σ
(m)
i E −A) is always SPD. Nevertheless, RBiCG is advantageous

here because of the backward error formulation discussed in section 5.2. We carry
out two sets of experiments that differ in the dimension, r, of the reduced models.
We also vary the frequency of computing a recycle space, as a recycle space can be
effective for multiple consecutive systems [44, 36] and updating it may be expensive.
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RBICG: First run
RBICG: Second run
RBICG: Third run
RBICG: Fourth run

Fig. 6.1. RBiCG for a convection-diffusion problem. (a) The coefficients of the PDE. (b)
Convergence for preconditioned RBiCG with s = 40 and k = 10 for the primary system solved four
times to analyze convergence improvement as the recycle space improves.

Table 6.1

Convergence of the recycle space for the convection-diffusion problem as measured by the cosines
of the principal angles between the primary (dual) recycle space and the right (left) invariant subspace
associated with the eight eigenvalues of smallest magnitude.

Primary system Dual system

Start of Start of Start of Start of Start of Start of

run 2 run 3 run 4 run 2 run 3 run 4

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.9896 1.0000 1.0000 0.9950 1.0000 1.0000

0.3832 1.0000 1.0000 0.9884 1.0000 1.0000

0.1452 0.9983 1.0000 0.7864 0.9844 1.0000

0.0988 0.9437 0.9970 0.6070 0.9206 0.8141

0.0300 0.1869 0.9567 0.4749 0.4118 0.4721

We implement the first recycling strategy from section 5.3 for a few selected shifts.
As for the convection-diffusion example, the recycling parameters, s and k, are chosen
based on experience with other recycling algorithms [44, 59]. If a pair of linear systems
converges in fewer than s iterations, the recycle space is not updated, and we use the
previous recycle space for the next pair of systems in the sequence. The relative
convergence tolerance for the iterative solves and the tolerance for constructing C̃j

and Cj in section 4.3 are taken as 10−6. The linear systems are split-preconditioned
with an incomplete LU preconditioner with threshold and pivoting (ILUTP) [47]. The
drop tolerance varies per problem to avoid ill-conditioning; see Figures 6.2–6.5. The
initial guess of the preconditioned system is the solution vector from the previous
preconditioned system in the sequence. For the first IRKA step, we take a vector
of all zeros as the initial guess. In general, a better initial guess may be based on
knowledge of the system and aim to avoid orthogonal initial residuals (Algorithm 1,
step 2; Algorithm 2, step 3).

For the first set of experiments, we reduce the models to r = 6 degrees of freedom,
with 1.00×10−5, 1.38×10−4, 1.91×10−3, 2.63×10−2, 3.63×10−1, and 5.01 as initial
shifts.
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Shift 1: Recycling BiCG
Shift 1: BiCG
Shift 2: Recycling BiCG
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Fig. 6.2. Convergence of preconditioned RBiCG at the third IRKA step for the n = 1357 rail
model, with s = 40, k = 10, and the preconditioner drop tolerance 0.1.
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5177 primary systems with s = 50, k = 10, and drop tol = 0.050
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Shift 1: Recycling BiCG
Shift 1: BiCG
Shift 2: Recycling BiCG
Shift 2: BiCG

Fig. 6.3. Convergence of preconditioned RBiCG at the second IRKA step for the n = 5177 rail
model, with s = 50, k = 10, and the preconditioner drop tolerance 0.05.

We compute a recycle space at every IRKA step. The results for the primary
systems at a particular IRKA step (given in the caption) are given in Figures 6.2–
6.5. The graphs for the other IRKA steps are similar, as are the graphs for the dual
systems. We carry out recycling for the smallest two shifts. Each figure has two solid
curves for the linear systems solved without recycling and two dashed-dotted curves
for those solved with recycling. It is evident that recycling significantly reduces the
number of iterations. The savings in iterations are as high as 70% per system. As
discussed in section 5.3, convergence for the remaining four (larger) shifts is rapid, so
recycling Krylov subspaces is not useful for these.

Next, we analyze the recycle space generated during the first two IRKA steps for
the order 5177 rail model corresponding to the smallest shift. In Table 6.2, we give
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Fig. 6.4. Convergence of preconditioned RBiCG at the second IRKA step for the n = 20209
rail model, with s = 40, k = 20, and the preconditioner drop tolerance 0.01.
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Fig. 6.5. Convergence of preconditioned RBiCG at the third IRKA step for the n = 79841 rail
model, with s = 50, k = 20, and the preconditioner drop tolerance 0.005.

the cosines of principal angles between the recycle space and the invariant subspace
spanned by eight eigenvectors associated with the eigenvalues of smallest magnitude.
As for the recycle space, the invariant subspace is computed for the preconditioned
operator. For the primary system, we use the right-invariant subspace. For the
dual system, we use the left-invariant subspace. As the recycle space improves, the
principal angles tend to zero, and so the cosines tend to one. Consider the results for
the primary system. At the first IRKA step and the end of the first cycle, we see that
the recycle space captures a subspace of dimension four of the invariant subspace.
The recycle space gets more accurate at the end of the second cycle and captures
a subspace of dimension seven. For the second IRKA step, we have a new shift,
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Table 6.2

Convergence of the recycle space for the sequence of linear systems corresponding to the 5177 rail
model and the smallest shift, as measured by the cosines of the principal angles between the primary
(dual) recycle space and the right (left) invariant subspace associated with the eight eigenvalues of
smallest magnitude. The third column corresponds to the dashed convergence curve in Figure 6.3.

Primary system Dual system

IRKA step 1 IRKA step 2 IRKA step 1 IRKA step 2

σ1 = 1.000× 10−5 σ1 = 1.834× 10−5 σ1 = 1.000 × 10−5 σ1 = 1.834× 10−5

End of End of Start of End of End of End of Start of End of

cycle 1 cycle 2 cycle 1 cycle 1 cycle 1 cycle 2 cycle 1 cycle 1

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000 1.0000

0.9987 1.0000 1.0000 1.0000 0.9765 1.0000 1.0000 1.0000

0.9321 1.0000 1.0000 1.0000 0.4936 1.0000 1.0000 1.0000

0.2257 1.0000 0.9998 0.9999 0.0844 0.9995 0.9997 0.9998

0.0260 0.9997 0.9996 0.9997 0.0231 0.9945 0.9945 0.9989

0.0072 0.7813 0.7799 0.9932 0.0068 0.3439 0.3423 0.9876

Table 6.3

The total number of iterations and computation time over all IRKA iterations with BiCG and
with RBiCG for the linear systems with the smallest shift. Total time includes the time for all
computations to compute the reduced model.

Size s k Drop IRKA
Total iteration count Total time(s)

tol steps BiCG RBiCG Ratio BiCG RBiCG Ratio

20209 40 20 0.01 31 3032 1434 2.11 73.82 54.28 1.36

79841 50 20 0.005 44 6324 2547 2.48 742.83 505.09 1.47

and so the matrix changes. Therefore, at the start of the first cycle, we see a slight
deterioration of the recycle space (almost negligible). This recycle space leads to the
dashed curve in Figure 6.3. By the end of the first cycle (at the second IRKA step),
all eight eigenvectors are captured. The results for the dual system recycle space are
similar.

For the second set of experiments, we reduce the models to r = 3 degrees of
freedom, using as initial shifts 1.00 × 10−5, 7.08 × 10−3, and 5.01. We compute the
recycle space at every fifth IRKA step. The results are given in Table 6.3. We im-
plement recycling for the smallest shift only. The linear systems corresponding to the
two (larger) shifts converge fast, so recycling Krylov subspaces is not useful for these.
Total iteration count refers to the sum of iteration counts for solving linear systems
over all shifts and all IRKA steps. Total time is the time in seconds required by IRKA
to converge to the ideal shifts. This includes the time for all IRKA computations as
well as all linear solves (BiCG or RBiCG, as the case may be). The table illustrates
that computing the reduced model without recycling takes about 50% more time than
with recycling. Obviously, the improvement for just the pairs of linear systems where
recycling is actually used is substantially larger.
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7. Conclusion. We focus on efficiently solving sequences of dual linear systems.
For several classes of problems, such as the linear systems arising in interpolatory
model reduction, or bilinear forms arising in quantum Monte Carlo methods, the
BiCG algorithm has advantages over methods like GMRES that would solve the
primary and the dual system separately. For sequences of dual linear systems arising
in such problems, it is advantageous to use Krylov subspace recycling for the BiCG
algorithm, and for this purpose we propose the RBiCG algorithm. The derivation of
RBiCG also provides the foundation for recycling variants of other popular bi-Lanczos
based methods, like CGS, BiCGSTAB, QMR, and TFQMR [3].

We have demonstrated the usefulness of RBiCG for interpolatory model reduc-
tion using IRKA, an application that may be an important niche for this solver. In
addition, we have analyzed and demonstrated the effectiveness of RBiCG for non-
symmetric linear systems arising from convection-diffusion problems. This suggests
that the RBiCG method may be useful in other areas where solving dual systems in
a Petrov–Galerkin sense brings special advantages.

In future work, we plan to extend the use of RBiCG to model reduction for MIMO
dynamical systems in a tangential interpolation framework where the right-hand sides
are not constant as in the SISO case. In addition, we will investigate the use of RBiCG
for evaluating bilinear forms arising in QMC algorithms. Our current results for this
look promising.

Acknowledgment. We thank the anonymous reviewers for their careful and
helpful suggestions, which greatly helped us improve this paper.
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