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PRECONDITIONERS FOR GENERALIZED SADDLE-POINT
PROBLEMS∗

CHRIS SIEFERT† AND ERIC DE STURLER‡

Abstract. We propose and examine block-diagonal preconditioners and variants of indefinite
preconditioners for block two-by-two generalized saddle-point problems. That is, we consider the
nonsymmetric, nonsingular case where the (2,2) block is small in norm, and we are particularly
concerned with the case where the (1,2) block is different from the transposed (2,1) block. We
provide theoretical and experimental analyses of the convergence and eigenvalue distributions of the
preconditioned matrices. We also extend the results of [de Sturler and Liesen, SIAM J. Sci. Comput.,
26 (2005), pp. 1598–1619] to matrices with nonzero (2,2) block and to the use of approximate Schur
complements. To demonstrate the effectiveness of these preconditioners we show convergence results,
spectra, and eigenvalue bounds for two model Navier–Stokes problems.
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1. Introduction. We examine preconditioners for real systems of the form

A
[

x
y

]
≡

[
A BT

C D

] [
x
y

]
=

[
f
g

]
,(1.1)

where A ∈ R
n×n, D ∈ R

m×m, and n > m. For many relevant problems, D = 0 and
B �= C, and such problems are referred to as generalized saddle-point problems [24].
For other problems we consider D �= 0, but ‖D‖2 is small enough that the problem
retains the characteristics of a generalized saddle-point problem. In many such prob-
lems, the nonzero (2,2) block arises from a stabilization term. However, this is not
always the case. In a problem involving metal deformation [35], for example, it derives
from very slight compressibility. In addition, we note that certain approaches to stabi-
lization lead to systems where B �= C [3, 24], [27, sections 7.5 and 9.4] although many
other problems have B = C. Finally, our preconditioners allow A to be singular. We
consider all of these cases, which arise in many applications, ranging from stabilized
formulations of the Navier–Stokes equations [4, 11, 27] to metal deformation [35] and
interior point methods [13].

Problems of this type have been of recent interest [1, 8, 9, 18, 20, 23], as have
their symmetric counterparts [7, 10, 14, 26, 31, 34] and the case where D = 0 [2, 5,
6, 8, 15, 19, 21, 23, 32]. However, preconditioners for the case where B �= C have not
received as much attention. Though they are considered in [8, 18, 23], these papers do
not provide numerical experiments for such problems. We will do this in the present
paper. In [8], a detailed analysis is provided for two classes of preconditioners for
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the case where B �= C and D = 0. Here, we extend these preconditioners to the
case where D �= 0 and to allow for approximations to the Schur complement matrix
that arises in the preconditioner. Our preconditioners for (1.1) derive from a matrix
splitting, A = F − E. Our purpose is to derive preconditioners that result in tightly
clustered eigenvalues. In general, this leads to fast convergence for Krylov subspace
methods, although in the nonsymmetric case the eigenvectors may play a role as well.

In this paper we assume that the matrix is nonsingular or that the singularity can
be easily removed, such as the constant pressure mode in the Oseen problem [12]. For
the splitting, we assume that F and (D−CF−1BT ) are nonsingular. In section 2, we
propose a block-diagonal preconditioner that is a generalization of the preconditioners
discussed in [18] and [8]. In section 3, we use this preconditioner to derive a second
preconditioned system, which is a generalization of the related system presented in [8].
For the D = 0 case, the related system corresponds to an efficient implementation of
a constraint preconditioner; see also [5, 6, 14, 26]. In section 4, we extend both types
of preconditioner to the use of approximate Schur complements. Our analysis focuses
on the D �= 0 case, but we provide specializations to the D = 0 case as well. While the
block-diagonally preconditioned system may be very effective or more convenient in
certain situations, the related system is generally the better preconditioner, offering
much faster convergence for a modest increase in the computational cost per iteration.
Therefore, in section 5 on numerical experiments we focus on the related system.

We propose preconditioners with exact (sections 2 and 3) and with approximate
(section 4) Schur complements, and we discuss the convergence for the preconditioned
systems and the clustering of the eigenvalues. We explore two model problems in
section 5. The first, which arises from a finite element discretization of the Navier–
Stokes equations, has D �= 0 and A �= AT . The second, which arises from a spectral
collocation approach for an incompressible Stokes problem, has B �= C and D = 0.
We use eigenvalue bounds and numerical experiments to illustrate that reasonable
choices for splittings and approximate Schur complements yield good convergence.
Our analysis also illustrates the issues involved in choosing splittings and approximate
Schur complements to achieve effective preconditioning. Although eigenvalue bounds
are often wide, they nevertheless indicate good eigenvalue clustering for reasonable
choices for splittings and approximate Schur complements.

2. Block-diagonal preconditioners (exact Schur complement). We con-
sider a splitting of the (1,1) block, A = F − E, where F is easy to solve with and
(D−CF−1BT )−1 exists. Note that −(D−CF−1BT ) is the Schur complement of the
matrix [

F BT

C D

]
,(2.1)

and we will use the phrase exact Schur complement to refer to −(D − CF−1BT ).
Next, we introduce the following block-diagonal preconditioner as a straightforward
generalization of preconditioners in [8, 18]:

P(F ) =

[
F−1 0

0 −(D − CF−1BT )−1

]
.(2.2)

Preconditioning from the left or the right with P yields a system of the form

B(F )

[
x̃
ỹ

]
=

[
I − S N
M Q

] [
x̃
ỹ

]
=

[
f̃
g̃

]
,(2.3)
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where B(F ) is either PA or AP. For example, the matrix from the left-preconditioned
system is

P(F )A =

[
I − F−1E F−1BT

−(D − CF−1BT )−1C −(D − CF−1BT )−1D

]
,

implicitly defining S, N , M , and Q in (2.3) for the left-preconditioned case. Apart
from the preconditioned (2,2) block Q, this resembles the system arising from the
zero (2,2) block case. For the rest of this paper, we assume that Q is diagonalizable.
While MN = I for the D = 0 case [23, 8], for D �= 0 we have

MN = −(D − CF−1BT )−1CF−1BT = −(D − CF−1BT )−1(−D + CF−1BT + D)

= I + Q.(2.4)

This is true for both the left- and right-preconditioned cases. In the D = 0 case, NM
is a projector [8]. For the D �= 0 case, it is not, as (NM)2 = NM + NQM .

In section 2.1 we derive the eigendecomposition of the matrix

B0 =

[
I N
M Q

]
,(2.5)

when I+Q (and thus BT and C) have full rank. We use this in section 2.2 to develop
bounds for the eigenvalues of B(F ) using perturbation theory. Finally, in section 2.3,
we discuss the case when I + Q is rank-deficient.

2.1. Eigenvalues and eigenvectors of B0. Assume that I +Q (and thus BT

and C) have full rank. We wish to find λ, u, and v such that

u + Nv = λu,(2.6)

Mu + Qv = λv.(2.7)

First, we assume λ = 1. Substituting this into (2.6) and using Q = MN − I in (2.7)
yields

Nv = 0 and Mu = 2v.(2.8)

Since BT has full column rank by assumption, this implies that v = 0 and that B0

has only eigenpairs of the form(
1,

[
u
0

])
, where u ∈ null (M) .(2.9)

Since C has full row rank, so does M , and B0 has precisely n−m distinct eigenpairs of
this type. Next, we consider the case where λ �= 1. Solving (2.6) for u and substituting
into (2.7) yields

λQvj = (λ2 − λ− 1)vj .(2.10)

Hence, the vj must be eigenvectors of Q. We have assumed that Q has a full set of
eigenpairs, Qvj = δjvj , for j = 1, . . . ,m. We then solve (2.10) for λ to yield

λ±
j =

(1 + δj) ±
√

4 + (1 + δj)2

2
;(2.11)
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cf. [11]. Using (2.6) with the eigenvectors of Q for v yields the vectors u. We finally
rescale the eigenvector by (λ±

j − 1) to yield eigenpairs of the form(
λ±
j ,

[
Nvj

(λ±
j − 1)vj

])
.(2.12)

Note that λ−
j �= 1 regardless of the choice of δj , and λ+

j = 1 only if δj = −1. However,
the latter would contradict the assumption that I + Q has full rank. Thus, B0 has
2m eigenpairs corresponding to λ �= 1. This completes a full set of eigenpairs for B0.
Let U1 be a matrix whose columns form an orthonormal basis for null (M) (cf. (2.9)),
and let U2 be the matrix with normalized columns uj = Nvj , where Qvj = δjvj ; cf.
(2.12). Furthermore, let Λ+ = diag(λ+

j ) and Λ− = diag(λ−
j ), where diag(·) denotes

the diagonal matrix with the given arguments. Then, the following matrix, Y, is an
eigenvector matrix of B0:

Y ≡
[

Y11 Y12

Y21 Y22

]
=

[
U1 U2 U2

0 V (Λ+ − I) V (Λ− − I)

]
.(2.13)

For our perturbation results we also need

Z = Y−1 =

[
Z11 Z12

Z21 Z22

]
.(2.14)

Using the block-inversion formula in [17, section 0.7.3] we obtain [29, 30]

Z11 =

[
In−m 0

0 Υ+

]
Y −1

11 = ÎnY
−1
11 ,(2.15)

Z21 = −
[

0 Υ− ]
Y −1

11 ,(2.16)

Z12 = −
[

0
(Λ− − Λ+)−1V −1

]
,(2.17)

Z22 =
(
V (Λ− − Λ+)

)−1
,(2.18)

with Υ+ = diag((λ−
j −1)/(λ−

j −λ+
j )) and Υ− = diag((λ+

j −1)/(λ−
j −λ+

j )). For Q = 0
(because D = 0), the eigendecomposition of B0 reduces to the case discussed in [8].

2.2. Perturbation bounds on the eigenvalues of B(F ). We are now ready
to consider the eigenvalues of B(F ) and derive bounds on the spectrum. Throughout
this paper ‖ · ‖ indicates the 2-norm.

Theorem 2.1. Consider matrices B(F ) of the form (2.3). Let Y be the eigen-
vector matrix of B0, as given by (2.13). Then for each eigenvalue λB of B(F ) there
exists an eigenvalue λ of B0 such that

|λB − λ| ≤
∥∥∥∥Y−1

[
S 0
0 0

]
Y
∥∥∥∥(2.19)

≤ 2 max
(
1, ‖Υ+‖, ‖Υ−‖

)
‖Y −1

11 SY11‖.(2.20)

Proof. Since B0 is diagonalizable, (2.19) follows from a classic result in pertur-
bation theory [33, Theorem IV.1.12]. We expand the right-hand side of (2.19) using
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(2.13)–(2.17) to get (see also [8])

|λB − λ| ≤
∥∥∥∥[ ÎnY

−1
11 SY11 ÎnY

−1
11 SY12

−
[

0 Υ− ]
Y −1

11 SY11 −
[

0 Υ− ]
Y −1

11 SY12

]∥∥∥∥
≤ max(1, ‖Υ+‖, ‖Υ−‖)

·
∥∥∥∥[ Y −1

11 SU1 Y −1
11 SU2 Y −1

11 SU2

−
[

0 I
]
Y −1

11 SU1 −
[

0 I
]
Y −1

11 SU2 −
[

0 I
]
Y −1

11 SU2

]∥∥∥∥ .
Using the consistency of the 2-norm, we can simplify this to (see also [8])

|λB − λ| ≤
√

2 max(1, ‖Υ+‖, ‖Υ−‖)
∥∥∥∥[ Y −1

11 SY11

−
[

0 I
]
Y −1

11 SY11

]∥∥∥∥
≤ 2 max(1, ‖Υ+‖, ‖Υ−‖)

∥∥Y −1
11 SY11

∥∥ .
The Υ± terms can be large only if δj ≈ −1 ± 2i. For the problems discussed

in section 5, the δj ’s are well separated from this value, because ‖D‖ is small and
the problem and preconditioner are relatively well conditioned. The following lemma
provides bounds on the ‖Υ±‖. We explicitly consider the special case where the δj ’s
are real (and thus bounded away from −1 ± 2i). This occurs in the important case
that D is symmetric and the Schur complement is definite. For the following proof
and subsequent discussions, we define the function p(z) = 4 + (1 + z)2.

Lemma 2.2. Let Υ+ and Υ− be defined as above.
1. If δj ∈ R, for all j, then

max(1, ‖Υ+‖, ‖Υ−‖) ≤ 1 +
√

2

2
.

Moreover, if δj ≥ −1, for all j, then max(1, ‖Υ+‖, ‖Υ−‖) = 1.
2. If δj ∈ C and ∃α : |δj | ≤ α <

√
5 for j = 1, . . . ,m, then

max(1, ‖Υ+‖, ‖Υ−‖) ≤ max

⎛⎝1,
1

2
+

1 + α

2
√

2
(√

5 − α
)
⎞⎠ .

Proof. Substituting λ±
j from (2.11) into Υ+ = diag(λ−

j − 1)/(λ−
j − λ+

j ) and

Υ− = diag(λ+
j − 1)/(λ−

j − λ+
j ) gives

Υ± = diag

(
1 − δj

2
√

4 + (1 + δj)2
± 1

2

)
= diag

(
1 − δj

2
√
p(δj)

± 1

2

)
.(2.21)

The proof for the real case now follows from basic calculus.
For the complex case, note that p(δ) = (δ + 1 + 2i)(δ + 1− 2i). Any δ must be at

least distance 2 from one of the roots of p(δ). We assume without loss of generality
that δ is near −1+2i. The value δ∗ = (−1+2i)α/

√
5 minimizes |δ+1−2i| subject to

|δ| ≤ α, and we have |δ∗ + 1 − 2i| =
√

5 − α. So, we have |p(δ)| ≥ 2
(√

5 − α
)
. Using

this inequality for |p(δ)| after taking norms in (2.21) completes the proof.
In practice, the bound for the complex case is quite modest. For example, if

|δj | ≤ 1 for all j, then our bound on max(1, ‖Υ+‖, ‖Υ−‖) is about 1.136. Likewise, if
|δj | ≤ 2 for all j, the bound is about 1.470.
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We derive a bound on
∥∥Y −1

11 SY11

∥∥ following the approach in [8]. Recall that
Y11 = [U1 U2], where UT

1 U1 = I, and U2 = NV with unit columns. Let U2 = V2Θ,
where V T

2 V2 = I. Furthermore, let ω1 = ‖UT
1 V2‖, which is the cosine of the smallest

principal angle between range (U1) = null (NM) and range (U2) = range (NM).
Lemma 2.3. Define Y11, S, U1, U2, V2, Θ, and ω1 as above, and let κ(.) denote

the 2-norm condition number. Then

∥∥Y −1
11 SY11

∥∥ ≤ κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖.(2.22)

Proof. We have ‖Y −1
11 SY11‖ ≤ κ(Y11)‖S‖, where

Y11 =
[
U1 V2

] [ I 0
0 Θ

]
,

since U2 has unit columns ‖Θ‖ ≥ 1 and ‖Θ−1‖ ≥ 1. So, our bound simplifies to

‖Y −1
11 SY11‖ ≤ κ(Θ) κ

([
U1 V2

])
‖S‖ ≤ κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖,(2.23)

where the second inequality follows from the bound on κ([U1 V2]) from Lemma 3.6 in
[8].

Corollary 2.4. Let Θ and ω1 be defined as above.
1. If δj ∈ R for all j, then

|λB − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖.(2.24)

2. If δj ∈ C and ∃α : |δj | ≤ α <
√

5 for j = 1, . . . ,m, then

|λB − λ| ≤ 2 max

⎛⎝1,
1

2
+

1 + α

2
√

2
(√

5 − α
)
⎞⎠κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖.(2.25)

Proof. Use Lemmas 2.2 and 2.3 in Theorem 2.1.
We see that the clustering of the eigenvalues depends mainly on ‖S‖ and the size

of the δj , unless ω1 ≈ 1 or κ(Θ) large. This implies that the block-diagonally precon-
ditioned system can have as many as 2m + 1 eigenvalue clusters, one for λ = 1 and
one for each λ±

j . Hence, the convergence of Krylov methods may not be very good for
the block-diagonally preconditioned system, even if ‖S‖ is small. Examples in section
5 will illustrate this. However, when the δj and ‖S‖ are small, the block-diagonal
preconditioner will give good convergence. This typically happens for small mesh
width when D and Q are h-dependent; see Table 5.1. In addition, the block-diagonal
preconditioner provides an intermediate step to a better preconditioner described in
section 3.

2.3. Rank-deficiency of I + Q. In section 2.1, we made the assumption that
I + Q has full rank (for D = 0, this is always true). We now briefly discuss the
rank-deficient case.

There are three sources of potential rank-deficiency in I + Q. The first two are
rank-deficiency in C and BT . The third is when there are vectors v such that Nv �= 0
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and Nv ∈ null (M). This implies that MNv = (I + Q)v = 0 and v is an eigenvector
of Q. This case occurs when F−1 (for left preconditioning) or −(D − CF−1BT )−1

(for right preconditioning) maps a nontrivial vector from range
(
BT

)
into null (C).

Assume that I + Q, C, and BT are rank deficient by k, lc, and lb, respectively.
Note that k ≥ max(lb, lc), since I+Q = −(D−CF−1BT )−1CF−1BT and the product
of matrices cannot be of higher rank than any of its factors.

Our previous analysis remains valid for the 2(m− k) eigenpairs (2.11) that corre-
spond to δj �= −1. It is also valid for the k eigenpairs where δj = −1 that correspond
to λ−

j . Since the Schur complement is invertible, M must also be rank deficient by lc.
Thus, the number of eigenpairs of the form (2.9) equals dim(null (M)) = n−m + lc.
This gives a total of n + m− k + lc eigenpairs, leaving us to find k − lc eigenpairs.

From (2.8), we have that all eigenvectors corresponding to λ = 1 must satisfy
Nv = 0 and Mu = 2v. Since dim(null (N)) = lb, there are lb independent vectors v
that satisfy Nv = 0. Unfortunately, there may be as many as lc independent vectors
v where Mu = 2v has no solution. If we do not have k − lc independent vectors v
such that Mu = 2v has a solution, then B0 is defective. The analysis of section 2.1
does not permit any other eigenvectors.

For the missing eigenpairs we have that λ+
j → 1 as δj → −1. Therefore, we

look for principal vectors of grade two (see [16]) for λ = 1. These vectors satisfy the
equations

Nv = ũ and Mu = 2v,(2.26)

where ũ �= 0 and ũ ∈ null (M). We note that there are k independent vectors v
such that (I + Q)v = 0. Since there are precisely lb independent vectors v such that
Nv = 0, there must be k − lb such vectors v that satisfy Nv = ũ with ũ �= 0 and
Mũ = 0. This gives k independent vectors v that satisfy the first equation of either
(2.8) or (2.26).

There exists a space of dimension lc such that Mu = 2v has no solution. How-
ever, since we have k independent v’s to propose, we are guaranteed to find k − lc
independent vectors v’s that satisfy this equation. This gives us either our remaining
eigenvectors or principal vectors of grade two. This also guarantees us that we have
Jordan blocks of size at most two.

In the special case when k = lb = lc, we have k − lc = 0, so we have a full set
of eigenvectors. We can apply the analysis described in the full rank case with k
additional eigenpairs (1, [ũT

n−m+j , 0
T ]T ) for j = 1, . . . , k, replacing the corresponding

eigenpairs (λ+
j , [(Nvj)

T , (λ+
j −1)vTj ]T ) for which δj = −1. Let U1 be such that UT

1 U1 =

In−m+lc and range (U1) = null (M). Let Ṽ be such that Ṽ T Ṽ = Ilc and range(Ṽ ) =

null (I + Q). Further, let the columns of V̂ be the eigenvectors of Q corresponding

to the eigenvalues δj �= −1, scaled such that U2 = NV̂ has unit columns. Finally, let

the diagonal matrices Λ̂+ and Λ̂− contain the eigenvalues λ+
j and λ−

j corresponding

to the eigenvalues δj �= −1 ordered consistently with the columns of V̂ . Then the
eigenvector matrix of B0 is given by

Y =

[
U

(n−m+lc)
1 U

(m−lc)
2 NṼ (lc) U

(m−lc)
2

0 V̂ (Λ̂+ − I) −2Ṽ V̂ (Λ̂− − I)

]
,(2.27)

where superscripts in the top row indicate the number of columns. The corresponding
eigenvalues are those from (2.9) and (2.11). We can then use the eigenvector matrix
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of B0 given in (2.27) to derive bounds on the eigenvalues, as for the full rank case.
The reduction in the number of columns of U2 may in fact reduce the factor κ(Θ)
in Corollary 2.4. An important example of this case is the stabilized Navier–Stokes
(Oseen) problem [11], where C = B and F is positive definite.

3. Fixed-point method and its related system (exact Schur comple-
ment). We now consider an alternative solution method that leads to faster con-
vergence in general; cf. [8]. In the D = 0 case this approach leads to an efficient
implementation of so-called constraint preconditioners; cf. [6, 5, 14, 26]. We can
derive the following splitting from (2.3):

B(F )

[
x
y

]
=

[
I − S N
M Q

] [
x
y

]
=

(
B0 −

[
S 0
0 0

])[
x
y

]
=

[
f̃
g̃

]
.(3.1)

Note that

B−1
0 =

[
I −NM N

M −I

]
.(3.2)

We left-multiply (3.1) by B−1
0 to yield the fixed-point iteration,[

xk+1

yk+1

]
=

[
(I −NM)S 0

MS 0

] [
xk

yk

]
+

[
f̂
ĝ

]
.(3.3)

Note that this iteration is formally the same as for the D = 0 case in [5, 8]. Since
xk+1 and yk+1 depend only on xk, we need to iterate only on the xk variables; see
also [4, pp. 214–215] and [8]. The x-component of the fixed-point of (3.3) satisfies
the so-called related system for the fixed-point iteration [16],

(I − (I −NM)S)x = f̂ . 1(3.4)

The full-size related system (that is, with the y component) and D �= 0 has been
examined elsewhere for special cases. In [26], A is symmetric positive definite and
spectrally equivalent to the identity, and so the splitting F = I is used. In [14], F is
symmetric positive definite. In both of these cases B = C.

3.1. Eigenvalue bounds for fixed-point matrix and related system. In
this section we assume n−m ≥ m, but equivalent results are obtained for m > n−m.
Let U1 and U2 be defined as in (2.13), Δ = diag(δj), and let U2 = V2Θ with V T

2 V2 = I.
Then, we have NMU1 = 0, NMU2 = NMNV = NV (I + Δ), and therefore

(I −NM) =
[
U1 V2

] [ I 0
0 −ΘΔΘ−1

] [
U1 V2

]−1
.(3.5)

In the rank-deficient case, we can use (2.27). So, for this approach rank-deficiency
has a potential advantage in terms of the conditioning of Θ. To analyze ‖I − NM‖
we need the following singular value decomposition (SVD):

UT
1 V2 = ΦΩΨT , where 1 > ω1 ≥ ω2 ≥ · · · ≥ ωm.(3.6)

1The full-size related system derives from using (2.1) as a left-preconditioner; see also [8].
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Following [8], we define W by WΣ = V2Ψ − U1ΦΩ, where the diagonal matrix Σ =
diag((1 − ω2

j )
1/2) contains the sines of the principal angles between range (U1) and

range (V2). Then, [U1 W ] is orthogonal, and we can decompose V2 as follows:

V2 = U1ΦΩΨT + WΣΨT .(3.7)

Theorem 3.1. Let U1,V2, and ω1 be defined as above. Let λR be an eigenvalue
of the related system matrix in (3.4). Then,

ρ((I −NM)S)
|1 − λR|

}
≤ (1 − ω2

1)−1/2(1 + ‖ΘΔΘ−1‖)‖S‖,

where ρ(·) designates the spectral radius.
Proof. The proof of this theorem largely follows [8]. Note that the result for

ρ((I−NM)S) immediately implies the result for |1−λR|. We have ρ((I−NM)S) ≤
‖I −NM‖‖S‖. Let Z = −ΘΔΘ−1. Then,

‖I −NM‖ =

∥∥∥∥[U1 V2]

[
I 0
0 Z

]
[U1 V2]

−1

∥∥∥∥(3.8)

≤
∥∥∥∥[U1 V2]

[
I 0
0 0

]
[U1 V2]

−1

∥∥∥∥ +

∥∥∥∥[U1 V2]

[
0 0
0 Z

]
[U1 V2]

−1

∥∥∥∥(3.9)

≤ (1 − ω2
1)−1/2 + (1 − ω2

1)−1/2‖Z‖ = (1 − ω2
1)−1/2(1 + ‖Z‖).(3.10)

The first term in (3.9) is the norm of an oblique projection. Given the SVD in (3.6),
this norm equals (1−ω2

1)−1/2 [22, section 5.15]. We establish the bound for the second
term as follows:∥∥∥∥[U1 V2]

[
0 0
0 Z

]
[U1 V2]

−1

∥∥∥∥ = max
U1a+V2b �=0

‖V2Zb‖
‖U1a + V2b‖

.(3.11)

Without loss of generality we may assume ‖b‖ = 1, so that ‖V2Zb‖ ≤ ‖Z‖. From
(3.7) we see that ‖U1a + V2b‖ = ‖U1a + U1ΦΩΨT b + WΣΨT b‖, which for any given
b is minimized by a = −ΦΩΨT b. This gives ‖U1a+ V2b‖ = ‖WΣΨT b‖, which in turn
is minimized for b = ψ1. Hence, we have∥∥∥∥[U1 V2]

[
0 0
0 Z

]
[U1 V2]

−1

∥∥∥∥ = max
U1a+V2b �=0

‖V2Zb‖
‖U1a + V2b‖

≤ (1 − ω2
1)−1/2‖Z‖.(3.12)

Therefore, by using (3.8)–(3.12) we have

ρ((I −NM)S) ≤ (1 − ω2
1)−1/2(1 + ‖ΘΔΘ−1‖)‖S‖.

If the δj are clustered, the influence of κ(Θ) is small.

Corollary 3.2. Let δ̂ = arg minz∈C maxj |z − δj | and δ̃j = δj − δ̂. Then

ρ((I −NM)S)
|1 − λR|

}
≤ (1 − ω2

1)−1/2(1 + δ̂ + κ(Θ) max |δ̃j |)‖S‖.

Proof. Note that Δ = δ̂I + diag(δ̃j), so ΘΔΘ−1 = δ̂I + Θ diag(δ̃j) Θ−1.
So, the eigenvalues of the related system cluster around 1, and the tightness of the

clustering is controlled through ‖S‖. Note that the factor containing ω1 in Corollary
3.2 is no larger than the corresponding factor for the block-diagonally preconditioned
system in Corollary 2.4. In addition, the influence of the κ(Θ) term is smaller for the
related system if the δj are clustered. This generally leads to better clustering and
tighter bounds for the related system than for the block-diagonally preconditioned
system. Because of these advantages, the related system will generally have faster
convergence than the block-diagonally preconditioned system.
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3.2. Satisfying “constraints”. In the D = 0 case, the second block of equa-
tions in (1.1) often represents a set of constraints. For the D �= 0 case, this may or
may not be the case. So-called constraint preconditioners in the D = 0 case have
the advantage that each iterate of a Krylov subspace method for the preconditioned
system satisfies the constraints if the initial guess is chosen appropriately. Fixed-point
methods such as (3.3) often satisfy the constraints after a single step. This is the case
for the fixed-point method proposed in [8] for D = 0. It turns out that we can prove
an analogous property for the D �= 0 case.

Lemma 3.3. For any initial guess [xT
0 , y

T
0 ]T , the iterates, [xT

k , y
T
k ]T , for k =

1, 2, . . . , of (3.3) satisfy Mxk + Qyk = g̃ in (2.3) and Cxk + Dyk = g in (1.1).

The proof can be found in [29, 30].

Corollary 3.4. After the first iteration of (3.3), all fixed-point updates are in
the null space of [M Q].

This follows trivially from Lemma 3.3.

We can also show that the iterates of a Krylov subspace method will satisfy the
constraints if the initial guess satisfies the constraints (cf. [8]). We first give a general
result and then specialize it to our problem. For the remainder of this section, A
and C are arbitrary matrices, not the matrices referred to in (1.1). We return to the
nomenclature of (1.1) in the next section.

Theorem 3.5. Let A ∈ R
n×n, b ∈ R

n, C ∈ R
m×n, and d ∈ R

m, and define the
iteration xk+1 = Axk + b. Further, let the iterates xk satisfy Cxk = d for k ≥ 1 and
any starting vector x0. Then, the iterates x(m), m ≥ 0, of a Krylov method applied
to the (related) system, (I −A)x = b, will satisfy Cx(m) = d if Cx(0) = d.

The proof can be found in [29, 30].

Corollary 3.6. The iterates, [x(m)T , y(m)T ]T , of any Krylov method applied to
the full n+m related system for (3.3) satisfy Mx(m)+Qy(m) = g̃ and Cx(m)+Dy(m) =
g if the initial guess is the result of at least one step of fixed-point iteration (3.3).

Proof. Use Theorem 3.5, with A as fixed-point iteration matrix in (3.3), b =

[f̂T ĝT ]T , C = [M Q], and d = ĝ.

4. Approximate Schur complement. It may be expensive to compute the
Schur complement matrix (D − CF−1BT ) or to compute and apply its inverse (or
factors). So, we would like to use a cheap approximation to the inverse of the Schur
complement. We now consider the effect of such an approximation on the eigen-
value clustering of the preconditioned matrices and on the resulting convergence. Let
S1 = −(D−CF−1BT ) denote the actual Schur complement and S−1

2 denote our ap-
proximation to its inverse. As we only need to apply S−1

2 , no explicit representation
of S2 is needed. Finally, let S−1

2 S1 = I + E .

4.1. Eigenvalue analysis of the block-diagonally preconditioned system.
Now, the block-diagonal preconditioner is as follows:

P(F, S2) =

[
F−1 0

0 S−1
2

]
.

We multiply (1.1) from the left by P(F, S2). We refer to the resulting preconditioned
matrix as B(F, S2). The system of equations with B(F, S2) is as follows:[

I − S N
M2 Q2

] [
x
y

]
=

([
I N
M Q

]
−
[

S 0
−EM −EQ

])[
x
y

]
=

[
f̃
g̃

]
,(4.1)
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where M , N , and Q are defined as in section 2, M2 = S−1
2 C, and Q2 = S−1

2 D. Note
also that M2 = S−1

2 S1S
−1
1 C = (I + E)M and analogously Q2 = (I + E)Q. Using

(4.1), we can bound the eigenvalues of B(F, S2) by considering the perturbation of
the eigenvalues of B0 analogously to our bounds in section 2.2.

Theorem 4.1. Let λB be an eigenvalue of B(F, S2), λ be an eigenvalue of B0,
and Qvj = δjvj.

1. If δj ∈ R for j = 1, . . . ,m, then

|λB − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖ + max
j

{
|1 + δjλ

+
j |, |1 + δjλ

−
j |
}
κ(V )‖E‖.

2. If δj ∈ C and ∃α > 0 s.t. |δj | ≤ α <
√

5 for j = 1, . . . ,m, then

|λB − λ| ≤ 2 max

⎛⎝1,
1

2
+

1 + α

2
√

2
(√

5 − α
)
⎞⎠κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖

+
2 + (1 +

√
5)α + 2α2√

2
(√

5 − α
) κ(V )‖E‖.

3. If D = 0, then

|λB − λ| ≤ 2

(
1 + ω1

1 − ω1

)1/2

‖S‖ +
2
√

5

5
‖E‖.

Proof. In section 2.1 we have already derived the eigendecomposition of B0.
From this decomposition we get the following perturbation bound (see [33, Theorem
IV.1.12]):

|λB − λ| ≤
∥∥∥∥Y−1

[
S 0

−EM −EQ

]
Y
∥∥∥∥

≤
∥∥∥∥Y−1

[
S 0
0 0

]
Y
∥∥∥∥ +

∥∥∥∥Y−1

[
0 0

EM EQ

]
Y
∥∥∥∥ .(4.2)

Corollary 2.4 gives bounds for the first term in (4.2). So, we need bounds only for the
second term.

Define X such that

X = Y−1

[
0 0

EM EQ

]
Y.

We have [
0 0

EM EQ

]
Y =

[
0 0

−E(MY11 + QY21) −E(MY12 + QY22)

]
,

where MU1 = 0 and MU2 = MNV = (I + Q)V = V (I + Δ). This gives MY12 =
MU2 = V (I+Δ), MY11 = [0 V (I+Δ)], QY22 = V Δ(Λ−−I), and QY21 = [0 V Δ(Λ+−
I)]. So, the previous equation reduces to[

0 0
EM EQ

]
Y =

[
0 0 0

0 −EV (I + ΔΛ+) −EV (I + ΔΛ−)

]
.(4.3)
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We then multiply (4.3) from the left by Y−1 (see (2.14)–(2.17)) and refactor to yield

X =

⎡⎣ 0 0 0
0 (Λ− − Λ+)−1 0
0 0 −(Λ− − Λ+)−1

⎤⎦⎡⎣ 0 0 0
0 V −1EV V −1EV
0 V −1EV V −1EV

⎤⎦W,

where

W =

⎡⎣ 0 0 0
0 I + ΔΛ+ 0
0 0 I + ΔΛ−

⎤⎦ .

Using the consistency of the 2-norm, we have the following bound on ‖X‖:

‖X‖ ≤ 2‖(Λ− − Λ+)−1‖max
j

{
|1 + δjλ

+
j |, |1 + δjλ

−
j |
}
κ(V )‖E‖.(4.4)

The remainder of the proof concerns the bounds on the right-hand side of (4.4)
for each particular case.

For the first part of the theorem, assume δj ∈ R for j = 1, . . . ,m. We have

λ−
j − λ+

j =
1 + δj −

√
4 + (1 + δ)2

2
− 1 + δj +

√
4 + (1 + δ)2

2
= −

√
4 + (1 + δj)2

= −
√
p(δ).

Clearly, |1/(λ−
j − λ+

j )| obtains its maximum at δj = −1. This yields |1/(λ−
j − λ+

j )| ≤
1/2. We can use this in (4.4) to complete the proof of the first bound.

For the second part of the theorem, we assume ∃α > 0 s.t. |δj | ≤ α <
√

5 for
j = 1, . . . ,m. First we derive a bound for ‖(Λ− − Λ+)−1‖. Recall the lower bound
on p(δ) in the proof of Lemma 2.2 and note that |1/(λ−

j − λ+
j )| = 2/

√
|p(δj)|. So, we

have ‖(Λ− − Λ+)−1‖ ≤ (2(
√

5 − α))−1/2. Furthermore, we have

|1 + δjλ
±
j | =

∣∣∣∣∣1 + δj
1 + δj ±

√
4 + (1 + δj)2

2

∣∣∣∣∣ ≤ 1 +
|δj ||1 + δj | + |δj |

√
|4 + (1 + δj)2|

2
.

We can bound |δ+1−2i| and |δ+1+2i| from above by
√

5+α; so,
√

|4 + (1 + δj)2| ≤√
5 + α. Thus, we have

|1 + δjλ
±
j | ≤ 1 +

α(1 + α) + α
(√

5 + α
)

2
= 1 +

1 +
√

5

2
α + α2.

Substituting these bounds into (4.4) yields

‖X‖ ≤ 2 + (1 +
√

5)α + 2α2√
2
(√

5 − α
) κ(V )‖E‖.(4.5)

We can then substitute this result into (4.2) to prove the second part of the theorem.
For the third part of the theorem, we assume D = 0. We bound the first term

in (4.2) using Theorem 2.1, Lemma 2.2 for δ ≥ −1, and Lemma 2.3 where κ(Θ) = 1.
This follows from the fact that U2 can be chosen to be orthogonal (see [8]).

For the second term in (4.2), since Q = 0, δj = 0, so λ−
j − λ+

j = −
√

5, and we
can choose V = I. We then substitute this into (4.4).
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In practice, in the complex case the term involving α will generally be modest.
For example, if α = 1, it is about 4.6022, and for α = 2, it is about 23.9727.

If we compare the bounds from Theorem 4.1 with those from Corollary 2.4 for
the block-diagonal preconditioner with the exact Schur complement, (D−CF−1BT ),
we see that the deterioration of the bounds is O(‖E‖). Note that the factors that
multiply the ‖E‖ are all constants with respect to the choice of the approximate
Schur complement, S−1

2 . This is about as good as we can hope for. The bounds also
demonstrate that there is no point in investing in a really good splitting when a poor
approximation to the Schur complement is used or vice versa. Rather, we should be
equally attentive to both if we want good eigenvalue clustering.

4.2. Eigenvalue analysis of the related system. If we follow the approach in
section 3 to generate the related system for this problem, we would generate precisely
the related system derived from (3.3), with S−1

1 instead of S−1
2 [8]. Therefore, we use

an alternative splitting of B(F ),

B(F ) =

[
I N
M2 Q2 + E

]
−
[

S 0
0 E

]
,

and derive the related system for this splitting. Due to the E term in the splitting,
however, we cannot reduce the size of our system. Instead, we get[

I − (I −NM2)S −NE
−M2S I + E

] [
x
y

]
=

[
f̂
ĝ

]
.(4.6)

For a special problem in magnetostatics, a linear system similar to (4.6) was
derived in [26]. If we use the choices for the splitting and approximations from [26],
we obtain basically the same system to be solved. In [26], the authors only outline
the qualitative behavior of the eigenvalues in the case that E is sufficiently small.

Theorem 4.2. For any eigenvalue, λR, of the related system matrix (4.6),

|1 − λR| ≤
√

1 + ‖N‖2
√

1 + ‖M2‖2 max (‖S‖, ‖E‖) .

Proof. Note that the matrix in (4.6) can be split as follows:[
I − (I −NM2)S −NE

−M2S I + E

]
= I −

[
I −NM2 N

M2 −I

] [
S 0
0 E

]
= I −

[
I −N
0 I

] [
I 0
M2 −I

] [
S 0
0 E

]
.

Expressing our matrix as a perturbation of the identity and using a classic perturba-
tion bound (see [33]) yields

|1 − λR| ≤
∥∥∥∥[ I −N

0 I

] [
I 0
M2 −I

] [
S 0
0 E

]∥∥∥∥ .
Noting that∥∥∥∥[ I −N

0 I

]∥∥∥∥ ≤
√

1 + ‖N‖2 and

∥∥∥∥[ I 0
M2 −I

]∥∥∥∥ ≤
√

1 + ‖M2‖2,

we obtain

|1 − λR| ≤
√

1 + ‖N‖2
√

1 + ‖M2‖2 max (‖S‖, ‖E‖) .
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The terms ‖N‖ and ‖M2‖ in the bound from Theorem 4.2 are fairly benign.
They are bounded by the norms of the off-diagonal blocks of the unpreconditioned
matrix (1.1) and the norms of the inverses of the splitting and approximate Schur
complement. Note that the latter two are chosen by the user. Moreover, if we use a
good preconditioner for this problem and therefore both our splitting and approximate
Schur complement are reasonably accurate, the norms of their inverses will not be large
relative to the norm of (1.1), unless (1.1) is itself poorly conditioned.

Just as for the block-diagonally preconditioned system, the eigenvalue perturba-
tion of the related system depends on both ‖S‖ and ‖E‖. Again, there is no advantage
in making one significantly smaller than the other. Thus, we should be equally atten-
tive to both ‖S‖ and ‖E‖ in order to achieve tight clustering and fast convergence.

5. Numerical experiments. We present numerical experiments for two model
problems, both arising from the Navier–Stokes equations.

The first model problem involves a stabilized finite element discretization of the
Navier–Stokes equations. We use the software toolkit for a two-dimensional leaky lid-
driven cavity problem developed for the Winter School in Scientific Computing and
Iterative Methods hosted by the Chinese University of Hong Kong in December 1995
and made available by David Silvester [11]. Using this toolkit, we can easily apply the
preconditioners and analysis from this paper to the stabilized Navier–Stokes problem
(Oseen case). This problem is nonsymmetric but has B = C. Excellent work has been
done by others on preconditioners for this specific problem [11, 31, 34], which we do not
intend to supplant. Rather, our goal is to illustrate the effect of the preconditioners
proposed in this paper on the convergence behavior and the eigenvalue distributions
for a problem which is well understood and easily accessible to the community.

In particular, we show what happens to the convergence of GMRES, the eigen-
values, and our eigenvalue bounds as we improve the splitting (‖S‖ → 0) and the
approximate Schur complement (‖E‖ → 0). We also succinctly compare the block-
diagonally preconditioned systems (2.3) and (4.1) with the related systems (3.4) and
(4.6), in terms of both eigenvalues and convergence. We also illustrate the importance
of balancing the quality of the splitting and the Schur complement to avoid wasted
effort. Finally, we study the influence of the mesh width on the convergence of the
related system.

The second model problem involves a spectral collocation discretization for the
incompressible Stokes equations on a square [3, 27]. This application has B �= C
and D = 0, and this particular formulation uses the Chebyshev nodes for the col-
location sites to allow the rapid computation of Gauss–Lobatto quadrature. To our
knowledge, this is the first presentation of convergence and eigenvalue results in the
literature for preconditioners for generalized saddle-point problems with B �= C. For
this application, we present GMRES convergence results as well as the locations of
the eigenvalues of the preconditioned system.

5.1. Navier–Stokes with finite elements. For our first experiments, we choose
a 16 × 16 grid, viscosity parameter ν = 0.1, and stabilization parameter β = 0.25.
After removing the constant pressure mode, the system has 705 unknowns. Since
multigrid cycles are actually matrix splittings, we use a number of multigrid V-cycles
to define the splitting of the (1,1) block. For each V-cycle we use three SOR-Jacobi
pre- and post-smoothing steps with relaxation parameter ω = 0.25. As a purely alge-
braic alternative, we also employ an ILUT factorization of the (1,1) block and vary
the drop tolerance to change the accuracy of our splitting [28].
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(a) Block-Diagonal Preconditioner (2.3).
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Fig. 5.1. Convergence of GMRES for both types of preconditioners, using the exact Schur
complement and varying the number of V-cycles for the splitting.

We start with the exact Schur complement, varying the number of V-cycles for
the splitting from one to six. Figures 5.1(a) and 5.1(b) show the convergence his-
tory for preconditioned GMRES for the block-diagonally preconditioned system and
the related system, respectively. Note that the related system converges in signifi-
cantly fewer iterations, for any choice of the number of V-cycles, demonstrating the
performance difference between the two preconditioned systems.

We have also computed the eigenvalue perturbation and the eigenvalue bounds
for both preconditioned systems, using up to nine V-cycles for the splitting, with
the exact Schur complement. Figure 5.2(a) shows the maximum absolute eigenvalue
perturbation from λ ∈ {1, λ±

j } for the block-diagonally preconditioned system (2.3),
and Figure 5.2(b) shows the maximum absolute eigenvalue perturbation from 1 for
the related system (3.4).
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(a) Block-Diagonal Preconditioner (2.3).
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(b) Related System (3.4).

Fig. 5.2. Maximum absolute eigenvalue perturbation and perturbation bounds, for both types
of preconditioners, using the exact Schur complement and varying the number of V-cycles for the
splitting.

As we use a better splitting for A (more V-cycles), we see that the eigenvalue
bound decreases with approximately the same rate as the corresponding eigenvalue
perturbations, although the bound is pessimistic. This pessimism is mostly due to
the κ(Θ) factor. Figure 5.2(b) includes an estimate of the perturbation for the related
system, which consists of the bound in Corollary 3.2 with κ(Θ) replaced by one. Both
the bound and our estimate follow the trend in the actual eigenvalue perturbation
well as the number of V-cycles increases. The figure shows that the bounds and the
estimate give good qualitative, respectively quantitative, descriptions of the eigenvalue
perturbation as the splitting improves.

The eigenvalue perturbation bound for the related system (3.4) is much smaller
than for the block-diagonally preconditioned system (2.3). However, the actual max-
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ILUT(1e − 5) and varying the splitting of the (1,1)
block (# V-cycles and ILUT tolerance).

Fig. 5.3. Convergence results for the related system using an approximate Schur complement.

imum eigenvalue perturbation for both systems is about equal. For the related sys-
tem, this represents a single eigenvalue cluster around 1, which means that the bound
proves fast convergence for about 6 V-cycles or more, and the actual (max) pertur-
bation indicates good convergence already for 1 V-cycle. On the other hand, for the
block-diagonally preconditioned system, this represents 2m + 1 (potentially) distinct
clusters around 1 and λ±

j for j = 1, . . . ,m. The existence of multiple clusters in this
case, compared with the single cluster for the related system, explains the difference
in their convergence behavior. These multiple clusters also explain the diminish-
ing returns of improving the splitting for the block-diagonal preconditioner shown in
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Fig. 5.4. The effects of ‖S‖ and ‖E‖ on the related system using the approximate Schur
complement.

Figure 5.1(a). As we see similar differences between the preconditioners for the other
test cases, we show results only for the related system for the remainder of this section.

We illustrate the convergence behavior for the preconditioner with an approximate
Schur complement as a function of the accuracy of the approximation by using an
ILUT decomposition [28]. While this may not be a practical choice, it serves our
purposes for this paper because it allows us to progressively increase the accuracy of
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Table 5.1

Effect of the number of grid points per dimension (n) on maxj |δj | and the number of GMRES
iterations for the related system (4.6) using a splitting of 5 V-cycles and various approximate Schur
complements.

Number of GMRES iterations
n max |δj | ILUT(1e-3) ILUT(1e-4) ILUT(1e-5) ILUT(1e-6)
4 1.72e+00 5 5 5 5
8 5.92e-01 5 4 4 4
16 1.60e-01 7 5 5 5
32 4.07e-02 13 6 5 5

the approximation to the inverse of the Schur complement. We use drop tolerances
ranging from 1e − 3 to 5e − 8.

Figures 5.3(a) and 5.3(b) show the effects of improving the splitting (for multi-
grid and ILUT) and the approximation to the Schur complement on the convergence
of GMRES for the related system (4.6). First, in Figure 5.3(a), we vary the drop
tolerance for the approximate Schur complement and fix the number of V-cycles for
the splitting at five. Then, in Figure 5.3(b), we demonstrate a number of splittings
using V-cycles and ILUT, and fix the drop tolerance at 1e − 5 for the approximate
Schur complement. The convergence results are quite good, regardless of the choice
of splitting.

The convergence rates in Figures 5.3(a) and 5.3(b) hit a point of diminishing re-
turns, past which improving either the splitting or the approximate Schur complement
while leaving the other unchanged does not improve convergence. To explain this, we
show the eigenvalue perturbations from 1 and the perturbation bound for the same
example in Figure 5.4. In both plots, the eigenvalue perturbation (and bound) cease
to decrease shortly after ‖S‖ is less than ‖E‖ or vice versa. This demonstrates that the
eigenvalue bound from Theorem 4.2 is indicative of the actual eigenvalue perturbation
and the resulting convergence behavior, and that using a significantly more accurate
splitting than approximate Schur complement, or vice versa, yields little additional
benefit. Finally, note that for reasonable choices of splitting and approximation to
the Schur complement the bounds are less than 1, indicating that the eigenvalues are
clustered away from the origin. This should lead to rapid convergence for Krylov
methods.

Varying the number of grid points per dimension, n = 1/h, gives some insight into
how the convergence of the related system (4.6) depends on h. Table 5.1 summarizes
these results. First, note that |δj | decreases with h. This leads to significant reductions
of the factors involving δj in the theorems of sections 2, 3, and 4. In particular, with
respect to Corollary 3.2 for the related system and Corollary 2.4 and Theorem 4.1
for the block-diagonal preconditioner, note that for small h the δj are nearly real.
Moreover, note that the convergence of GMRES for the related system (4.6) depends
only mildly on h. A good splitting and a reasonably accurate approximate Schur
complement seem to lead to h-independent convergence.

5.2. Incompressible Stokes with spectral collocation. We will build dis-
cretizations with polynomials of degree up to 22 for this problem. The largest system
will be of size 1241. We use an odd-even ordering for the velocity unknowns to ex-
ploit the orthogonality properties of Chebyshev polynomials and put the (1,1) block
in block-diagonal form. We use ILUT with a drop tolerance of 1e− 4 for the splitting
of the (1,1) block, and for the approximate Schur complement we use ILUT with a
drop tolerance between 1e − 3 and 1e − 5. Figure 5.5(a) shows the eigenvalues of the
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(a) Eigenvalues of related system for polynomial de-
gree N = 22 using an approximate Schur comple-
ment with ILUT(1e − 4).
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(b) GMRES iteration count versus maximum
polynomial degree (N) for various approximate
Schur complements. The iteration counts for
the exact Schur complement coincide with those
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Fig. 5.5. Eigenvalues and iteration counts for the related system (4.6) from spectral discretiza-
tion of the incompressible Stokes equations with an ILUT(1e−4) splitting and an approximate Schur
complement.

related system for the largest problem, N = 22. Except for a single eigenvalue of
O(1e−2), the eigenvalues are tightly clustered around one. As expected, this leads to
rapid convergence, as shown in Figure 5.5(b). Moreover, the GMRES iteration count
for the related system with an approximate Schur complement (with the exception
of ILUT(1e− 3)) shows only modest dependence on the maximum polynomial degree
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N . Hence, even for fully asymmetric problems, our preconditioners are effective and
show the potential of scaling well to larger problems.

6. Conclusions and future work. We have proposed and analyzed variants
of indefinite preconditioners (the related system) and block-diagonal precondition-
ers for the D �= 0 case, including the use of approximate Schur complements. We
have illustrated their performance in terms of convergence, eigenvalue perturbations,
and eigenvalue bounds using well-known model problems. Further analysis should
help tighten the eigenvalue bounds, in particular using the consistency property of
matrix norms less. We also aim to specialize our methods to particular problems.
We are currently exploring applications from metal deformation, porous media flow,
optimization, and electromagnetics.
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[20] P. Krzyżanowski, On block preconditioners for nonsymmetric saddle point problems, SIAM
J. Sci. Comput., 23 (2001), pp. 157–169.

[21] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact Newton method for large sparse
equality constrained non-linear programming problems, Numer. Linear Algebra Appl., 5
(1998), pp. 219–247.

[22] C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[23] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite

linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.
[24] R. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems,

SIAM J. Numer. Anal., 19 (1982), pp. 349–357.
[25] M. Parks, E. de Sturler, G. Mackey, D. Johnson, and S. Maiti, Recycling Krylov Sub-

spaces for Sequences of Linear Systems, Technical report UIUCDCS-R-2004-2421, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 2004.

[26] I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.

[27] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
2nd ed., Springer-Verlag, New York, 1997.

[28] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[29] C. Siefert, Preconditioners for Generalized Saddle-Point Problems, Ph.D. thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, 2005.

[30] C. Siefert and E. de Sturler, Preconditioners for Generalized Saddle-Point Problems, Tech-
nical report UIUCDCS-R-2004-2448, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, Urbana, IL, 2004.

[31] D. Silvester and A. Wathen, Fast iterative solution of stabilized Stokes systems, II: Using
general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.

[32] D. Silvester, H. Elman, D. Kay, and A. Wathen, Efficient preconditioning of the linearized
Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128 (2001), pp.
261–279.

[33] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[34] A. Wathen and D. Silvester, Fast iterative solution of stabilized Stokes systems, I: Using

simple diagonal preconditioners, SIAM J. Numer. Anal, 30 (1993), pp. 630–649.
[35] L. Zhu, A. J. Beaudoin, and S. R. MacEwan, A study of kinetics in stress relaxation of AA

5182, in Proceedings of TMS Fall 2001: Microstructural Modeling and Prediction During
Thermomechanical Processing, Indianapolis, IN, 2001, pp. 189–199.


