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Abstract This paper presents a practical computational
approach to quantify the effect of individual observations in
estimating the state of a system. Such a methodology can be
used for pruning redundant measurements and for design-
ing future sensor networks. The mathematical approach is
based on computing the sensitivity of the analyzed model
states (unconstrained optimization solution) with respect to
the data. The computational cost is dominated by the solu-
tion of a linear system, whose matrix is the Hessian of the
cost function, and is only available in operator form. The
right-hand side is the gradient of a scalar cost function that
quantifies the forecast error of the numerical model. The use
of adjoint models to obtain the necessary first- and second-
order derivatives is discussed. We study various strategies
to accelerate the computation, including matrix-free iter-
ative solvers, preconditioners, and an in-house multigrid
solver. Experiments are conducted on both a small-size
shallow-water equations model and on a large-scale numer-
ical weather prediction model, in order to illustrate the
capabilities of the new methodology.
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1 Introduction

Data assimilation is the process that combines prior infor-
mation, numerical model predictions, observational data,
and the corresponding error statistics, to produce a better
estimate of the state of a physical system. In this paper,
we consider the four-dimensional variational (4D-Var)
approach, which formulates data assimilation as a nonlinear
optimization problem constrained by the numerical model.
The initial conditions (as well as boundary conditions, forc-
ings, or model parameters) are adjusted such as to minimize
the discrepancy between the model trajectory and a set
of time-distributed observations. In real-time operations,
the analysis is performed in cycles: observations within an
assimilation time window are used to obtain an optimal tra-
jectory, which provides the initial condition for the next
time window, and the process is repeated. Data assimilation
is an important application of data-driven application sys-
tems (DDDAS, or InfoSymbiotic systems) where measure-
ments of the real system are used to constrain simulation
results.

The quality and availability of observational data have a
considerable impact on the accuracy of the resulting analy-
sis (optimal initial conditions). We are interested to quantify
rigorously the impact that different observations have on the
result of data assimilation. The assessment of contributions
of observations has important applications such as detecting
erroneous data (e.g., due to faulty sensors), pruning redun-
dant or unimportant data, and finding the most important
locations where future sensors should be deployed.

Early studies of observation impact were concerned with
quantifying the predictability of the numerical model, using
breeding vectors, potential vorticity, and singular vectors
[1, 2]. It was assumed that observations in areas of high
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uncertainty would significantly improve the data assimi-
lation, which led to the concept of targeted and adaptive
observations. Later research developed specialized meth-
ods such as ensemble transformation techniques [3, 4] and
adjoint-based model sensitivity [5, 6]. Some of this research
was validated through Observing System Simulation Exper-
iments (OSSEs) [7-9]. Recent research shifted focus from
the numerical model to studying the entire data assimila-
tion system for ensemble-based methods [10], 3D-Var [11],
nonlinear 4D-Var [12, 13], and incremental 4D-Var [14].
Important alternative approaches to assess the importance
of observations are based on statistical design [15] and
information theory [16, 17].

The focus of this work is on the sensitivity of the
4D-Var analysis to observations. The sensitivity equa-
tions are derived rigorously in the theoretical framework
of optimal control and optimization [18-20]. Sensitivity
analysis reveals subsets of data and areas in the com-
putational domain, which have a large contribution in
reducing (or increasing) the forecast error. The solution
of the 4D-Var sensitivity equations involves the solution
of a linear system, whose system matrix is the Hessian
of the 4D-Var cost function. This matrix is typically very
large and available only in the form of matrix—vector
products.

This work addresses two challenges associated with com-
puting sensitivities to observations. The first challenge is
the computation of the required first- and second-order
derivatives. The solution discussed herein is based on first-
and second-order adjoint models. The second challenge is
obtaining an accurate solution of the large linear system that
defines the sensitivities.

Computational time is an important consideration, espe-
cially in applications where the solution is needed in real
time. Several solutions are proposed in this work. A set of
preconditioners is selected and tested to speed up the con-
vergence of Krylov solvers. A multigrid strategy is also
considered. Tests are conducted using two numerical mod-
els. The first one is the 2D shallow-water equations, for
which all the derivatives can be computed very accurately.
The second test is the Weather Research and Forecast (WRF)
model, widely used in numerical weather prediction. The
experimental results illustrate the potential of the proposed
computational approaches to speed up observation impact
calculations in real-life applications.

The paper is organized as follows: Section 2 reviews the
4D-Var data assimilation approach. Section 3 covers the
theoretical framework of sensitivity analysis in the context
of 4D-Var and derives the equations for the sensitivities
to observations. Section 4 discusses practical computa-
tional algorithms and their application to the shallow-water
equations along with visual results for experimental tests.
Section 5 presents the results obtained with the large-scale
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WRF model. Conclusions are drawn in Section 6, and several
directions of future research are highlighted.

2 Data assimilation

Data assimilation (DA) is the process by which measure-
ments are used to constrain model predictions [21, 22]. For
this, three sources of information are combined: an a pri-
ori estimate of the state of the system (the “background”),
knowledge of the physical laws governing the evolution of
the system (captured by the numerical model), and sparse
observations of the system. In 4D-Var assimilation, an opti-
mal initial state x§ (“analysis”) is obtained by minimizing
the cost function

1 T
T(x0) = 3 <x0 — xg) B (xo — xg) (1a)
1 N
+3 kgomk(xw -yl Ry (e x0) — o)
X = argmin J (xo) . (1b)
X0

The first term of the sum (1a) quantifies the departure of
the solution from the background state xg at the initial time
to. The term is scaled by the inverse of the background error
covariance matrix By. The second term measures the mis-
match between the forecast trajectory and the observations
Yk, which are taken at times #y, ..., fy inside the assimi-
lation window. When assimilating observations only at the
initial time #y, the method is known as three-dimensional
variational (3D-Var), as the additional “time” dimension
is not present. M is the numerical model used to evolve
the state vector x in time. Hy is the observation operator
at assimilation time f; and maps the discrete model state
Xp A X () = My, " (xp) to the observation space. Ry is the
observations error covariance matrix. The weighting matri-
ces Bp and Ry need to be predefined in order to have a fully
defined problem, and their quality influences the accuracy
of the resulting analysis.

Since an analytical solution for the equation (1b) is
not possible, the minimizer is computed iteratively using
numerical optimization methods. Such methods typically
require the gradient of the cost function, while Newton-type
methods also require second-order derivative information.
Higher-order information can be computed using techniques
from the theory of adjoint sensitivity analysis [23]. In this
case, first-order adjoint models provide the gradient of the
cost function, while second-order adjoint models provide
the Hessian—vector product. The methodology of building
and using various adjoint models for optimization, sensitiv-
ity analysis, and uncertainty quantification can be found in
[24, 25].
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When 4D-Var is employed in an operational setting (in
real time), its analysis (1b) has to be determined within a
given time limit, and the iterative solver is stopped after
a certain number of iterations, typically before complete
convergence. Although the most significant decrease in the
cost function usually happens during the first iterations, it
is likely that the analysis is approximate and does not sat-
isfy exactly the optimality conditions. Slow convergence is
a known issue for the solution of highly nonlinear problems
of partial differential equation (PDE)-constrained optimiza-
tion. The resulting improved model states can be interpreted
as only partially assimilating the observations. Along with
the problem of correctly defining the error statistics, it rep-
resents one of the practical challenges of data assimilation.

3 Sensitivity of the analysis to observations

The sensitivity of the analysis to observations is derived
in the context of unconstrained optimization, and the pre-
sentation follows [19]. Consider 4D-Var as the problem
of finding a vector xo € R” that minimizes the twice
continuously differentiable cost function

min 7 (Xg, 0) (2)
X0

which also depends on a vector of parameters u € R™.
We can then apply the implicit function theorem to the
first-order optimality condition

Vo J (X3, ) = 0 A3)

which guarantees that there exists a vicinity of u where the
optimal solution is a smooth function of the input data, xjj =
xo(u) and Vy, J(x§(u), w) = 0, and the sensitivity of the
optimal solution x{j with respect to the parameters u can be
expressed as

—1
VaXy) = =3, o7 0. w - [ V2, T o )]
4)

In 4D-Var data assimilation, the sensitivity to observations
is studied by further considering a scalar functional £ that
represents some quantity of interest of the optimal solu-
tion, £(x{(w)) [12, 34]. Using chain rule differentiation, we
obtain its sensitivity to parameters:

a 2 2 !
VaE = Vaxh - Vi€ = Ve oI (ViT) VE )

For the 4D-Var cost function (1a), the first-order necessary
condition reads

Vi Jx5) = By (x4~ x3)

N
+ Y MIHIR (M (x) —yi) =0, (6)
k=1

where Moy = (M) is the tangent linear propagator
associated with the numerical model M and Hy = (Hy)' is
the tangent linear approximation of the observation opera-
tor. Differentiating (6) with respect to observations yi yields

Voo J(x0) = Ry Hy Mo ©)

which then provides the following analysis sensitivity to
observations:

Vye X3 = R He Mok (Vg7 (33)) 7

(®)
In the context of data assimilation, we consider £ (xg) to be
a forecast score, i.e., a performance metric for the quality
of the analysis. If the 4D-Var problem is defined and solved
correctly and if the data is accurate, then x{j should provide
a better forecast than the background xg; this is quantified
by £(xj) < & (xg). Validating the forecast against a refer-
ence solution is often used as a way to assess the quality
of the initial condition. Since one does not have access to
the state of the real system, the 4D-Var analysis is verified
against another solution of higher accuracy (the “verifica-
tion” forecast). Specifically, we define the forecast score as

E(xf) = (xf — x)T C (¢ —x}) 9)

where xp = My, (xj) is the model forecast at verifi-
cation time f¢, X%' is the verification forecast at #f, and C
is a weighting matrix that defines the metric in the state
space. For example, C could restrict £ to a subset of grid
points, in which case we will quantify the influence of
assimilated observations in reducing the forecast error in the
corresponding subdomain.

Using the chain rule differentiation for the forecast score,
we obtain

Vy & (Xg) = Vy.Xj - Vxo& (Xg) .

This leads to the following expression for the forecast
sensitivity to observations:

Vyké'(xg) = Rk_1 Hy Mo « (VXOsXOj (XS)Y1 Vo€ (X(a)) :
(10)

The accuracy of the 4D-Var sensitivity equations relies
on satisfying the implicit function theorem condition which
asks that our 4D-Var analysis is close enough to the global
minimizer of the objective cost function. Throughout this
paper, we consider this to be true, which is to also be pur-
sued in the experimental tests. When one has to stop the
iterative solver before converging to the global optimum,
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the sensitivity equations for the resulting analysis might not
precisely apply.

Obtaining the sensitivity (10) is the main goal of this
paper. We summarize the big picture from a systems theory
perspective. Data assimilation takes as inputs the follow-
ing parameters: the background estimate of the state of
the atmosphere, the observations, the error statistics, and
the forecast model. It produces a better initial condition.
We perform a forecast using this new estimate and com-
pute a metric of the forecast error as the mismatch against
a verification forecast. We trace back the reduction of the
forecast error to the input parameters (specifically, to the
observations). This process involves the following three
computational steps.

3.1 Forecast sensitivity to reanalyzed initial condition

We first compute the sensitivity of the forecast score (9) to
the optimal initial condition:

Vi E(x§) = M{ 1V, E(x)) = 2M{ ;C(x} — x{) . (11)

The gradient (11) is computed by running the first-order
adjoint model, initialized with the forecast error x; — xj.
The first-order adjoint model evolves the forecast error field
backward in time to produce a field of sensitivities at the
initial time. This calculation reveals regions in the initial
condition to which the output (forecast error, in this case)
is most sensitive. This step requires just one adjoint model
run and does not add a significant computational load to the
method as a whole.

3.2 Forecast sensitivity through the 4D-Var system

The second step consists in solving a large-scale linear
system of the following form:

Vfo,XOJ(XS) o = Vx E(X) . (12)

The system matrix is the Hessian of the 4D-Var cost func-
tion evaluated at the optimal solution. The right-hand side is
the vector of sensitivities (11). The linear system (12) solves
the matrix—vector product in (10). The inverse of the 4D-Var
Hessian approximates the covariance matrix of the analysis
error [26, 27]. The solution o will be referred to as “super-
sensitivity” and is a crucial ingredient for the computation
of forecast sensitivities to all data assimilation parameters .
The present work focuses on efficiently solving the linear
system (12), as it presents the main computational burden of
the entire methodology.
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3.3 Forecast sensitivity to the 4D-Var parameters

From (10), the forecast sensitivity to observations is
obtained as follows:

wr = Mok 1o,
Vy, E(x3) = Ry H e .

The index k selects the observation time #;. The supersensi-
tivity po at ¢ is propagated forward to time #; using the tan-
gent linear model, to obtain the vector uy. This solution is
applied to the linearized observation operator Hy, is applied,
and the solution is scaled by R,:l, the inverse covariance
matrix of the observational errors. The sensitivity equations
for other parameters can be found in [19]. For example, the
forecast sensitivity to the background estimate is

V(X)) = B, wo.

This provides insight about the meaning of supersensitivity:
it represents a time-dependent field that quantifies the sen-
sitivity of the forecast score to the information assimilated
at a certain time. At #g, this information is the background
and, at other times, is the observations.

4 Numerical tests with the shallow-water equations
4.1 Numerical model

The first model used to study the performance of the
computational methodology is based on the shallow-water
equations (SWE). The two-dimensional PDE system (13)
approximates a thin layer of fluid inside a shallow basin:

d d 9
Zh+ —(uh) + —(vh) = 0
37 3y )+ 55 )

9 9 1 3
—uh) + — (u?h + =gh® | + —(uvh) = 0 13
Bt(u )+8x <u +2g )—i—ay(uv) (13)

O omy+ L omy + 2 (vh+ Len?) =0
—(v —(uv — v - =0.
ot ox dy 28

Here, h(t, x, y) is the fluid layer thickness and u(¢, x, y)
and v(¢, x,y) are the components of the velocity field.
The gravitational acceleration is denoted by g. The spatial
domain is Q = [—3, 3]2 (spatial units), and the integration
window is fp = 0 < ¢t < tf = 0.1 (time units). The numer-
ical model uses a finite-volume-type scheme for space
discretization and a fourth-order Runge—Kutta scheme for
time discretization [28]. Boundary conditions are specified
as periodic. A square g x ¢ discretization grid is used, and
the numerical model has n = 3¢ variables:

~

h

X=| uh

vh

e R".
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We call the discretized system of equations the forward
model (FWD), used to simulate the evolution of the non-
linear system (13) forward in time. We are interested in
computing the derivatives of a cost function [J(xg) with
respect to model parameters, like the initial condition. These
derivatives can be computed efficiently using adjoint mod-
eling. The theory and applications of adjoint models to data
assimilation can be found in [29, 30]. The distinction is
made between continuous adjoints, obtained by linearizing
the differential equations, and discrete adjoints, obtained by
linearizing the numerical method. Construction of adjoint
models is a work-intensive and error-prone process. An
attractive approach is automatic differentiation (AD) [31].
This procedure parses the source code of the FWD model
and generates the code for the discrete adjoint model using
line-by-line differentiation.

We build the adjoint SWE model through automatic dif-
ferentiation using the TAMC tool [32, 33]. The tangent
linear model (TLM) propagates perturbations forward in
time. The first-order adjoint model (FOA) propagates per-
turbations backwards in time and efficiently computes the
gradient of a scalar cost function of interest (Vy,J). The
second-order adjoint model (SOA) computes the product
between the Hessian of the cost function and a user-defined
vector (V,%O’XOJ - u) [25]. Second-order adjoint models are
considered to be the best approach to compute Hessian—
vector products, but have yet to become popular in practice
because of their computational demands. When one does
not have access to the second-order adjoint, Hessian—vector
products can be computed through various approximations,
such as finite differences of first-order adjoints.

The overhead of running adjoint models has to be taken
into account for the design of the computational strategy.
Table 1 presents the CPU times of TLM, FOA, and SOA
shallow models, normalized with respect to the CPU time
of a single FWD model run. One SOA integration is about
3.5 times more expensive than a single first-order adjoint
run, while the FOA takes 3.7 times longer than the forward
run. The adjoint model runs take a significant computa-
tional time. This effort depends on the numerical methods
used in the FWD model and on the automatic differentiation
tool employed. For certain numerical methods, it is possible
to develop efficient strategies based on reusing computa-
tions, which lead to adjoint times smaller than forward
model times. An example can be found in [25] where the

Table 1 Normalized CPU times of different sensitivity models. The
forward model takes one time unit to run

FWD 1

TLM 2.5 FWD + TLM 3.5
FOA 3.7 FWD + FOA 4.7
SOA 12.8 FWD + TLM + FOA + SOA 20

adjoint SWE equations are derived by hand and then solved
numerically.

4.2 Data assimilation scenario

The 4D-Var data assimilation system used in the numerical
experiments is set up as follows:

— The computational grid uses g = 40 grid points in each
directions, for a total of 4,800 model variables. The time
step is 0.001 (time units).

—  The reference solution is plotted in Fig. 1a and obtained
as follows: The initial % field is a Gaussian bell cen-
tered on the grid. The initial # and v are constant fields.
The forecast obtained by running the forecast model
from the initial solution for 100 time steps is plotted in
Fig. 1b.

—  The background solution x” is generated by adding a
correlated perturbation to the reference solution x =
[A, u, v]. The background error covariance By corre-
sponds to a standard deviation of 5 % of the reference
field values. The spatial error correlation uses a Gaus-
sian decay model, with a correlation distance of five
grid points. The three variables £, u, and v are correlated

a
40 130
> 20 110
o5 90
b
40 130
>20 110
% 20 40 29

Fig. 1 Surface plots for height model states at initial and final
(observation) time
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at the same grid point. This dictates how the 4D-Var
method spreads the information from one grid point to
its neighbors.

—  Synthetic observations are generated from the reference
model results at time step 100. We add white noise
to simulate observation errors. The observation error
covariance matrix R is diagonal (i.e., the observation
errors are uncorrelated). The standard deviation is 1 %
of the largest absolute value of the observations for each
variable.

— The observation operator H is linear and selects
observed variables at specified grid points. Since we are
using observations at each grid point, here 7{ acts as the
identity matrix.

We use the L-BFGS-B solver [34] to minimize the 4D-Var
cost function. We allow the solver to run for as long as nec-
essary to reduce the norm of gradient of the 4D-Var cost
function from the initial magnitude of le+7 to a reason-
ably small value of le—4, which takes about 400 solver
iterations. Note that one cannot afford to obtain such a high-
quality optimal solution with a large-scale model. The SWE
test case allows to compute the sensitivity to observations in
a setting where numerical optimization errors are negligible.

4.3 Particularities of the linear system

The solution of the linear system (12) is the central step of
the entire computational process. As mentioned in Section
3.1, the right-hand side is the gradient of the forecast aspect
with respect to initial conditions and is obtained at the cost
of one FOA run. The adjoint model propagates backward in
time the mismatch between the forecast and the verification.

The system matrix in (12) is the Hessian of the 4D-Var
cost function, evaluated at the analysis. For large-scale mod-
els like the atmosphere, the Hessian cannot be computed
and manipulated in an explicit form due to its dimension. In
practice, one evaluates directly the Hessian—vector product
by running the second-order adjoint model. When SOA is
not available, one can approximate Hessian—vector products
through finite differences of FOA gradients.

Vo J (5 4 € -w)T — Vy T (x8)T
€

. (14)

2 a ~
VXO,XOJ(XO) ‘ur

A third method to compute Hessian—vector products is the
Gauss—Newton approximation of the Hessian, also known
in literature as the “Hessian of the auxiliary cost function”:

N
Vi JE - u~Byu+ ZM({kH,{R,;IHk Moy -u.

X0,X0
k=1

5)
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The formulation above is obtained in a similar fashion
to the formulation of incremental 4D-Var [35], by differen-
tiating the 4D-Var cost function and ignoring second-order
terms, which are negligible when the solution is close
to the optimum. However, since these terms are the only
ones to contain the innovation vector, this approximation
cannot fully reflect data variations. Meanwhile, the second-
order adjoint models take into account the innovation vector
which is reconciled with the backward time-marching oper-
ator for the second-order adjoint variable. Computationally,
the Gauss—Newton Hessian—vector product is obtained by
running the TLM model forward in time starting from the
seed vector and then using its output to initialize a FOA
model run backward in time. When this forward—backward
sweep can be performed in a shorter time than the one nec-
essary to run the second-order adjoint models, the former
methodology is preferred. For our SWE model, we will later
show that both finite-difference and Gauss—Newton approx-
imations provide results of acceptable accuracy with respect
to second-order adjoint models.

Yet another strategy is to build limited-memory approx-
imations of the Hessian from information collected during
the data assimilation process. In [36], the authors use the
Lanczos pairs generated by the iterative solver employed to
minimize the 4D-Var cost function. This type of approxima-
tion is usually helpful for building preconditioners, but did
not prove accurate enough to be used as the system matrix
in the linear system (12).

Corresponding to the spatial discretization chosen for our
experiment, the size of the model solution is 4,800 vari-
ables. Accordingly, the size of the 4D-Var Hessian matrix
is 4,800 x 4,800. The explicit form of this matrix can be
obtained through matrix—vector products with the e; unity
vectors (SOA model). This is not feasible in practice, but
our SWE model is small enough to allow us to build the
full Hessian and analyze its properties. Thus, we find out
that the Hessian is symmetric to machine precision, which
confirms the superior quality of second-order information
obtained with the SOA model. Also, because the 4D-Var
optimization problem in Section 4.2 is solved accurately,
the analysis is close to the optimum and the 4D-Var Hes-
sian evaluated at this point is positive-definite. Our tests
show that when evaluated far from the optimum, the 4D-Var
Hessian is indefinite. This has consequences for real-time
operations where only a limited number of iterations are
allowed.

The structure of the Hessian matrix exhibits some reg-
ularities, characteristic to information matrices and their
covariance counterparts. In literature, this structure is
known as “near block-Toeplitz” [37]. The first 1,600 rows
correspond to the model variables of A, the next 1,600 rows
to u, and the last 1,600 to v. The matrix elements scale dif-
ferently in each one of these three blocks. Some obvious
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features occur on the diagonals, rows, and columns, spaced
every 40 or 1,600 rows and columns. This hints at the fact
that the 4D-Var Hessian approximates the inverse of the
covariance matrix of the analysis errors [26, 27]. We inter-
pret these patterns as arising from the discretization scheme
stencil (each point of the grid is correlated to its east, west,
north, and south neighbors). In addition, each variable is
weakly connected to the other two variables, correspond-
ing to a distance of 1,600 rows/columns. This structure can
be predicted without building the explicit form of the Hes-
sian, from prior information such as the background error
covariance matrix By.

The spectrum of the matrix is of great interest for our
analysis, since it will influence the convergence of the
iterative solvers. The eigenvalues of the SWE Hessian are
displayed in Fig. 2, sorted in ascending order. The condition
number of the Hessian (ratio between largest and smallest
eigenvalues) is ~ 10*, which makes the matrix moderately
well conditioned. However, since the eigenvalues are not
clustered together, we expect slow convergence.

4.4 Matrix-free linear solvers

The choice of solvers for the linear system (12) is lim-
ited to “matrix-free” algorithms. Direct solvers and basic
iterative methods are ruled out since they require the full
system matrix, which is not available. Krylov-based itera-
tive solvers require only matrix—vector products and exhibit
superior performance over basic iterative methods. How-
ever, their convergence depends on the eigenvalues of the
system matrix. As seen in Fig. 2, the Hessian is positive-
definite, but its spectrum is scattered. Preconditioning can
considerably improve the convergence of iterative solvers.

Eigenvalues

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Modes

Fig. 2 Eigenvalues of the SWE 4D-Var Hessian at the analysis (opti-
mal solution), sorted in ascending order

Additional challenges arise in large-scale 4D-Var data
assimilation. The analysis can be far from the minimizer,
when the minimizing algorithm is stopped before reaching
the minimum; in this case, the resulting Hessian matrix can
be indefinite. Although by definition a Hessian matrix is
symmetric, the symmetry can be lost when approximations
such as finite differences are employed. In an operational
setting where the sensitivities are used to target adaptive
observations, results have to be delivered in real time; the
key is to provide the best possible solution in a given time.

The matrix-free iterative solvers used to solve the SWE
supersensitivity system (12) are listed in Table 2. The list
includes the most popular algorithms currently used for
large linear systems. Detailed information about each solver
can be found in the scientific literature [38, 39].

We used the iterative solvers implemented in the PETSc
[40] software package. PETSc supports matrix and vector
operations and contains an extensive set of solvers and pre-
conditioners. We interfaced PETSc with our shallow-water
model and solved the linear system with each of the meth-
ods above. Also, we double-checked the results with our
own Fortran and MATLAB implementation of the algo-
rithms. The initial guess was set to a vector of zeros, and no
preconditioner was used for the results presented in this sec-
tion. We compare the convergence of the linear solvers by
monitoring the decrease in the residual norm and the error
norm at each iteration. The error norm was computed as a
root-mean-square error with respect to a reference solution
,ugEF obtained by solving the system directly using the full
Hessian, and this error metric has the following expression:

o — wiEF

Jn

We allocate a budget of 100 matrix—vector products as
SOA runs. BiCGSTAB and CGS use two matrix—vector
products per iteration, which means 50 iterations. The other
solvers use just one, so they will run for 100 iterations within
our budget. Figure 3a plots the relative decrease in the norm
of the error and Fig. 3b the relative decrease in the norm of
the residual. Table 3 presents the solution error and resid-
ual norm decrease after 100 matrix—vector products of each
solver.

RMSE = (16)

Table 2 List of iterative methods used to solve the SWE system (12)

GMRES Generalized minimum residual
MINRES Minimal residual

CG Conjugate gradients

QMR Quasi-minimum residual
BiCGSTAB Biconjugate gradients stabilized
CGS Conjugate gradients squared
LSQR Least squares
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Relative decrease in error norm

10° * 1
+
*
I
O BiCG
CGS
- =-=--LSQR
0 50 100

Matrix—vector products

Relative decrease in residual norm

10

0 50 100
Matrix—vector products

Fig. 3 Convergence of nonpreconditioned iterative solvers for the
SWE supersensitivity system (12)

The decrease in the solution error and residual norms is
as expected from the theory of Krylov solvers. CG provides
the best error reduction. GMRES, MINRES, and QMR
show the best performance for reducing the residual. CG is
known for its superior performance over other solvers when
dealing with symmetric and positive-definite matrices. It
acts on reducing the A-norm of the error, as opposed to
GMRES, MINRES, and QMR, which act upon the residual.
For symmetric positive-definite matrices, the latter three are
equivalent, which explains their similar behavior. CGS and
BiCGSTAB exhibit a slow initial convergence, but CGS
eventually catches up with GMRES. LSQR has the worst
performance, confirming that a least-squares approach is
not suitable for solving this problem. In consequence, CG
would be the ideal solver to use when we can guarantee
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Table 3 Solution error and residual norms after 100 matrix—vector
products of each solver for the SWE supersensitivity system (12). The
scaling is done with respect to the initial guess error and residual
norms, respectively

Solver Relative decrease Relative decrease
in residual norm in error norm

GMRES 2.219e—1 6.62e—2
MINRES 2.164e—1 6.53e—2

CG 9.461le—1 4.95-2

QMR 2.219e—1 6.62e—2
BiCGSTAB 9.461le—1 5.54e—2

CGS 1.124e—1 1.48e—2

LSQR 9.792e0 9.83e—1

the system matrix is symmetric and positive-definite. Oth-
erwise, one should use GMRES (or MINRES), with the
amendment that the numerical workload per iteration is
slightly larger than for CG.

4.5 Preconditioned Krylov solvers

We next explore preconditioning strategies to improve the
convergence of the iterative methods. The Krylov solvers
perform better when the matrix eigenvalues are clustered.
As seen in Fig. 2, the eigenvalues of the SWE Hessian matrix
are scattered across various orders of magnitude. This
explains why no method converged to the actual solution.

Building effective preconditioners for the supersensi-
tivity linear system (12) is challenging. Preconditioners
require a good understanding of the underlying problem
and the structure of the matrix; this is difficult with-
out having access to the full system matrix. The matrix-
free constraint excludes certain preconditioning techniques
such as incomplete factorizations, wavelet-based, or vari-
ations of the Schur complement. Moreover, basic precon-
ditioners such as diagonal cannot be constructed solely
from matrix—vector products, without a significant com-
putational effort. We consider here preconditioning strate-
gies that rely on curvature information collected dur-
ing the numerical minimization process. Predicting the
structure of the Hessian matrix can also help with the
solution of the problem. We next describe the proposed
preconditioners.

4.5.1 Diagonal of Hessian

The diagonal of the matrix is one of the most popular
practical preconditioners and was proved to be the opti-
mal diagonal preconditioner in [41]. When we only have
access to the matrix under the form of an operator, its diag-
onal is not readily available. Therefore, we use the diagonal
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preconditioner in this test only as a reference for the perfor-
mance of the other preconditioners. In a real setting, one has
access to neither the actual diagonal nor banded or arrow
preconditioners.

4.5.2 Diagonal of the background covariance matrix

Preconditioners that do not require any supplementary com-
putations can be obtained from By, the covariance matrix
of the background errors in 4D-Var. In practice, this matrix
cannot be manipulated with ease due to its size. However,
its diagonal is accessible, and we use it as a preconditioner
in the following tests. This choice has been reported to pro-
vide better convergence in incremental 4D-Var under certain
conditions [36].

4.5.3 Row sum

The system matrix (12) approximates the inverse of a
covariance matrix. Covariance matrices have their larger
elements on the diagonal, and under some conditions, they
have a diagonally dominant structure. Consequently, we use
the sum of row elements to build an approximation of the
diagonal. This can be computed with just one second-order
adjoint run, where the Hessian is multiplied by a vector of
ones. The diagonal preconditioner used in our tests is built
from the output of the second-order adjoint and taking the
absolute value.

4.5.4 Probing and extrapolating

This approach takes advantage of the results in [42, 43]
where the possibility of block diagonal approximations of
the 4D-Var Hessian is explored. The values for a certain
variable and for a certain vertical level (not applicable here
since we have a 2D model) are assigned a constant value.
We approximate these values by using Hessian—vector prod-
ucts to “probe” the matrix. For our three-variable model,
we run three Hessian—vector products with unity vectors to
extract one column (row) of the Hessian at one time. The
value of the corresponding diagonal element is used as an
approximation for all diagonal elements in that block.

To be specific, we consider three unity vectors for our
4,800 x 4,800 Hessian that have the value 1 at positions 1,
1,601, and 3,201, respectively, and zeros everywhere else.
The corresponding Hessian—vector products will extract the
columns 1, 1,601, and 3,201, which correspond to the three
different variables in our Hessian. The approximation uses
the value found at coordinates (1, 1) for the entire first diag-
onal block (up to coordinates 1,600, 1,600), the value found
at coordinates (1,601, 1,601) for the entire second block,
and so forth. This approximation can be refined by prob-
ing for more elements from the same block. If there are

many blocks that have to be probed and the computational
burden increases significantly, one can employ coloring
techniques to probe for more than one element with the
same matrix—vector product.

4.5.5 Quasi-Newton approximation

The Hessian matrix can also be approximated from the
data collected throughout the minimization process. Quasi-
Newton solvers such as L-BFGS build Hessian approxi-
mations and refine them with the information generated at
each iteration. These approximations are sufficiently accu-
rate along the descent directions to improve the convergence
of the minimization iterations. The approximations preserve
matrix properties such as symmetry and positive definite-
ness and allow limited memory implementations appropri-
ate for large-scale models. We store the approximation of
the Hessian as generated over the last 10 iterations of mini-
mizing the 4D-Var cost function with L-BFGS. This will be
used as a preconditioner for the linear system and does not
require any supplementary model runs. Our tests showed
that using more than 10 vector pairs does not improve
further the quality of the resulting preconditioner.

4.5.6 Eigenpairs

This preconditioning method is borrowed from 4D-Var data
assimilation literature [36]. During the minimization of the
4D-Var cost function, the leading eigenvalues and eigenvec-
tors are calculated via a Lanczos process. An approximation
of the Hessian (evaluated at the current analysis) can be
generated from the leading eigenvalues or eigenvectors and
used as a preconditioner for the supersensitivity system (12).
In our tests, we use the leading 50 eigenpairs to approximate
the Hessian.

4.5.7 Randomized SVD

Randomized SVD [44] computes an approximate singular
value decomposition of a matrix only available as an opera-
tor. The algorithm requires two ensembles of matrix—vector
products, and one singular value decomposition and one
QR decomposition with smaller matrices. All matrix—vector
products can be executed in parallel as they are independent
of each other. The number of input vectors used can vary,
and the accuracy of the approximation is proportional to the
size of the ensemble. For our tests, we used 50 different
input vectors.

4.5.8 Performance of preconditioned algorithms

The experiments to compare the performance of the pre-
conditioners were conducted with GMRES as the linear
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Table 4 Solution error and residual norms after 100 nonprecondi-
tioned iterations of GMRES for the SWE supersensitivity system (12).
The scaling is done with respect to the initial guess error and residual

a
10

0

norms, respectively

Preconditioner

Relative decrease

in residual norm

Relative decrease

in error norm

10

“““““ No preconditioner

None 1.3e—3 7.2e-3
Diagonal 8.0e—5 1.2e—3
Coloring 8.0e—5 1.2e—3
Row sum 1.2e—4 1.9e—3
L-BFGS 3.8e—4 1.6e—2
Eigenpairs 8.0e—5 1.7e-3
RandSVD 8.0e—5 1.2e—3

solver, because of its generality. The norm of the error
against the reference solution and that of the residual is
shown in Table 4 and Fig. 4a. A comparison with the
results in Table 2 and Fig. 3a reveals that all precondi-
tioners improve convergence. L-BFGS LMP starts off with
the best decrease, but then it stops accelerating and, after
100 iterations, has the worst performance among all pre-
conditioners. The preconditioners formed from probing,
leading eigenpairs, and randomized SVD perform almost
as well as the exact diagonal. Finally, the row sum precon-
ditioner also shows good results, comparable to the latter
preconditioners.

The conclusion is that some preconditioners can decrease
the error after 100 iterations by a factor of up to 100.
After 25 iterations, the preconditioned algorithm reaches
the same accuracy that the unpreconditioned algorithm
achieves after 100 iterations. This improvement of 75 %
in the computation time is very significant for large-scale
models.

4.6 Multigrid solver

Multigrid (MG) describes a class of numerical methods
that speed up numerical solutions by alternating compu-
tations on coarser or finer levels [45, 46]. These methods
can be defined geometrically (using a grid) or purely alge-
braically. We refer to each fine-grid-to-coarse-grid sweep as
a “multigrid cycle,” “V-cycle,” or “cycle” for short.

Our linear system (12) is appropriate for the multigrid
approach because one can run the SWE model on different
spatial discretizations. Consider the 40 x 40 grid used in the
previous tests as the fine-level grid (4,800 variables). We
can simulate the same scenario coarser grid, for example
20 x 20 (1,200 variables) and 10 x 10 (300 variables). For
simplicity and clarity, we use only the first two levels in our
test.
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Fig. 4 Convergence of GMRES with different preconditioners for the
SWE supersensitivity system (12)

Traditional MG uses smoothers that require the full
matrix, and one challenge is to build a matrix-free approach.
Here, we use GMRES as smoother. The MG theory does
not guarantee convergence for Krylov-based methods, but
there are reports of them being used successfully. A second
challenge consists in designing the operators that transfer
the problem between grids. One needs to restrict the resid-
ual of the linear system from the fine grid to the coarse grid
and to prolongate the correction from the coarse grid back
to the fine grid. We use a projection operator that computes
the mean value of a square of size 2 x 2 to reduce our field
by a factor of 4; the interpolation operator is the transpose
of the projection operator.

To assess the performance of the two-level multigrid
method, we limit the number of model runs to 100. We
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run multigrid GMRES with one, two, and three cycles and
allocate the 100 model runs uniformly across cycles and
levels. For MG with one cycle, we allocate the model runs
as 33 model runs to the initial fine-grid smoother (F), then
33 model runs to the coarse-grid solver (C), and 34 model
runs on the final fine-grid smoothing. For two cycles, we
distribute these 100 model runs as 20F + 20C + 20F +
20C + 20F. The same applies for three cycles, where we
have 14 model runs on each grid. We are interested in a con-
clusive reduction in the residual (or error), especially after
projecting the correction from the coarse grid to the fine
grid.

Table 5 shows the MG solver results. The rows represent
the different MG scenarios described above, plus a standard
approach without MG, on the first line. The columns rep-
resent MG cycles. Each cycle is composed of two levels:
fine and coarse. The MG algorithm starts on the fine grid
by smoothing out the errors, then projects the residual of
the intermediate solution on the coarse grid, and performs
another smoothing of the errors. The result is projected back
to the fine grid and used to correct the solution. This is called
“Correction Scheme” as opposite to “Full Approximation
Scheme” and is repeated for as many cycles as necessary.
In each table entry, we display the residual and error norms.
For fine-grid columns, the norms are computed on the fine
grid and correspond to the solution obtained after smooth-
ing. For coarse-grid columns, the displayed norms were still
computed on the fine grid, after prolongating the correction
from the coarse grid to the fine grid and applying it to the
solution. We show all the intermediate solutions in order
to analyze the MG behavior for each cycle. The solution
error norm decreases after projecting and applying the cor-
rection from the coarse grid to the fine grid after each stage.
This was not trivial to accomplish, as it required crafting
the prolongation operator as described above. The improve-
ment is not reflected by the solution residual norm which
sometimes shows an increase after prolongation, for exam-
ple when using MG with one cycle. By comparing the final

Table 5 Residual and error norms of solutions obtained at each
multigrid stage (SWE)

Cycle 1 2 3 Final

Residual 4.0e—4
Error 1.9e—-2
Residual 1.1e—2 7.0e—4
Error 7.7e—2 2.6e—2
Residual 1.1e—2 3.0e—3 1.0e—3
Error 9.1e-2 5.5e-2 4.0e—2
Residual 2.5e-2 1.1e—2 8.0e—3 6.0e—3
Error 1.1e—2 6.7e—2 5.3e-2 4.4e—-2

solution error norm obtained for different MG scenarios, it
is inferred that better results are obtained with using fewer
cycles and more smoother iterations per cycle. This can
be explained in terms of the Krylov solvers having more
iterations available to build the Krylov space; the Krylov
space information is lost when switching from one grid
to another.

MG provides the ability to run the model at a coarser
resolution which in turn reduces computing time. This is
very useful when dealing with large-scale models and their
adjoints. The results reported in Table 5 are very good,
even if they were produced using a basic MG algorithm.
The performance of MG could be improved considerably
by tuning the selection of coarse grids, building more accu-
rate transfer operators, and testing additional matrix-free
smoothers.

4.7 Visual analysis of sensitivity results

We will next present the qualitative results for computing
the sensitivity to observations by running the data assim-
ilation scenario from Section 4.2 and then applying the
methodology to obtain the sensitivity of the forecast aspect
to the assimilated observations.

The sensitivity field corresponding to perfect & observa-
tions is plotted in Fig. 5a, as computed using second-order
adjoint models for the Hessian—vector evaluation. The sen-
sitivities to the same observations, only noisy this time, are
computed in a similar fashion, and the resulting difference
field for sensitivities to perfect i observations is plotted
in Fig. 5b. It can be observed that noise does not intro-
duce a significant change which means our approach will
pick up the relevant sensitivity information. We also com-
puted the sensitivity to observations using finite differences
with first-order adjoint runs and the Gauss—Newton approx-
imation. For each method, the approximation errors with
respect to the second-order adjoint methodology are plotted
in Fig. 5c, d. The errors are reasonably small to not affect
the sensitivity analysis.

We now illustrate the sensitivity analysis results for the
following hypothetical scenario. Consider the SWE data
assimilation test case described in Section 4.2, except two
of the observations are faulty. In a real setting, we would
not know their location, but the sensitivity analysis results
should reflect them.

Our approach is to modify the value of observations
corresponding to A, u, v at two locations, before starting
the assimilation process. This is done only for the final
time of the assimilation window. The modified observations
are located on the north—south median line, at coordinates
10 x 20 and 30 x 20 on the 40 x 40 grid, as shown in
Fig. 5a. The two locations were chosen to be isolated from
each other so that the associated sensitivities will have a
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Fig. 5 Forecast aspect sensitivity to /4 noisy and perfect observations
when computed with second-order adjoints and sensitivity approx-
imation errors for perfect i observations with finite-difference and
Gauss—Newton

smaller chance of totally overlapping. Due to the symmetry
of the locations, it is expected that the results will be easier
to study intuitively.

The fields of supersensitivities corresponding to A, u, and
v are plotted in Fig. 6a—c. The spatial features exhibited by
the sensitivity fields give useful insight into the data assim-
ilation process. For each variable, larger sensitivity values
can be distinguished around the two locations where we
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Fig. 6 Fields of forecast sensitivities to observations, represented on
the computational grid

prescribed the faulty observations, with a pulse-like local
correlation. This can be understood as being locations where
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small changes in data will greatly influence the forecast
aspect via the 4D-Var analysis. The correlation spread for &
is radial, while for « and v, it is aligned along the direction
associated with that particular vector component.

5 Numerical tests with the weather research
and forecast model

In this section, we consider a realistic test case based
on the WRF model.

5.1 Numerical model

The WRF model [47] is a state-of-the-art numerical weather
prediction system that can be used for both operational
forecasting and atmospheric research. WRF is the result of
a multiagency and university effort to build a highly par-
allelizable code that can run across scales ranging from
large-eddy to global simulations. WRF accounts for multi-
ple physical processes and includes cloud parameterization,
land surface models, atmosphere—ocean coupling, and broad
radiation models. The terrain resolution can be as fine as
30 s of a degree.

The auxiliary software package WRFPLUS [48] provides
the corresponding tangent linear and first-order adjoint
models. WRFPLUS is becoming a standard tool for appli-
cations such as data assimilation [49] and sensitivity anal-
ysis [50]. However, the adjoint model is work in progress
and misses certain atmospheric processes. Because of this
incompleteness, the computed sensitivities are only approx-
imations of the full WRF gradients and Hessians. This will
not affect the main conclusion of this study, namely that
the proposed systematic approach to solving sensitivities to
observations is feasible in the context of a real atmospheric
model. Nevertheless, we expect that the sensitivity approx-
imations have a negative impact on the convergence of the
iterative solvers.

There is no second-order adjoint model developed for
WREF to this point. This poses a challenge to our method-
ology, as it requires second-order derivatives. We con-
sider several ways to approximate second-order infor-
mation using the available tangent linear or first-order
adjoint models. First, we compute Hessian—vector products
through finite differences of gradients obtained via first-
order adjoint model. Unfortunately, our tests show that this
approximation is marred by large errors and fails to produce
useful results. Further investigation revealed that the adjoint
model dampens the perturbations introduced in the system.
The second approach is the Gauss—Newton approximation
discussed in Section 4.3. The seed vector provides the initial
condition to the tangent linear model, which propagates it to
the final time. The result is mapped back to the initial time

through the adjoint model. This is feasible for WRF since the
required numerical tools are available. The Gauss—Newton
approach introduces additional approximation errors in the
second-order sensitivity, beyond the incompleteness of the
first-order adjoint model.

WRF has the ability to perform forecasts on mesoscale
domains defined and configured by the user. The simulation
scenario selected covers a region across the East Coast of
North America, centered on Virginia, and takes place over a
time period of 6 h starting on 6 June 2006 12:00 UTC. For
simplicity, we assimilate only surface observations at the
final time #¢ + 6 h obtained from NCEP. We start our simula-
tions from reanalyzed fields, that is, simulated atmospheric
states reconciled with observations (i.e., using data assimi-
lation). In particular, we use the North American Regional
Reanalysis (NARR) data set that covers the North Amer-
ican continent (160 W-20 W, 10 N-80 N) with a spatial
resolution of 10 min of a degree, 29 pressure levels (1,000—
100 hPa, excluding the surface), and a temporal resolution
of 3 h and runs from 1979 until present.

The spatial discretization is a regular grid with 30 points
on the east—west and north—south directions and a horizon-
tal resolution of 25 km. Since the atmosphere has different
physical properties along with altitude, the vertical dis-
cretization involves 32 levels. A fixed time step of 30 s
is used. The wall clock time for one time step of the for-
ward (WRF) model is ~1.5 s. The wall clock time for one
time step of the adjoint (WRFPLUS) model is ~4.5 s, about
three times larger. For finer-grid resolutions or for nested
grids, the computational effort can increase significantly;
one needs the power of parallel architectures for computing
sensitivities in an operational setting.

The experiment starts with minimizing the 4D-Var cost
function until the norm of the gradient is reduced from ~10?
to ~1073. The data assimilation procedure in WRFDA is
an incremental approach revolving around the solution of
a linear system as obtained with CG. The forecast error is
obtained by comparing this 4D-Var analysis against a ver-
ification forecast represented by the corresponding NARR
analysis. This forecast error was propagated backward in
time through the adjoint model to obtain the right-hand
side of the supersensitivity system (12). All results below
use Hessian—vector products computed using the Gauss—
Newton approximation.

5.2 Solution of the linear system

To solve the linear system associated with WRF, we use
the GMRES algorithm from the PETSc software library,
since this algorithm can handle nonsymmetric and indef-
inite matrices. We select a subset of the preconditioners
used with the SWE model. The first preconditioner (and the
easiest to obtain) is the diagonal of the covariance matrix
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Fig. 7 Convergence of preconditioned iterative solvers for the WRF
supersensitivity system (12)

By. The second preconditioner is the sum of elements in
each row. The third preconditioner is a limited memory
quasi-Newton approximation that uses information gathered
throughout the data assimilation process. As shown in [51],
the descent directions generated by the minimizer can be
used to build the limited memory preconditioner through the
L-BFGS formula. The fourth and last preconditioner used is
the randomized SVD with 100 random vectors, computed in
parallel at the equivalent total cost of just two model runs.
The decrease in the norm of residual is presented in Fig. 7
and in Table 6.

As we can see from these results, the convergence
of GMRES did not improve considerably through pre-
conditioning. Moreover, while the unpreconditioned solver
reduces the error of the residual monotonically, the precon-
ditioned ones do not. The row sum preconditioner performs
better than all the others in the first 15 iterations and then
starts departing from the solution. A similar behavior can be
observed for the preconditioner obtained from randomized
SVD, which performs best between the 15th and 30th itera-
tions. The diagonal of By preconditioner is the best for the
next 50 iterations, except for a small interval where the LMP

Table 6 Solution residual norm after 100 preconditioned iterations of
GMRES for the WRF supersensitivity system (12). The scaling is done
with respect to the initial guess residual norms

Preconditioner Relative decrease
in residual norm

None 7.2e—-2

Background 7.6e—2

Row sum 4.5e—1

LMP l.1le—1

Randomized SVD 2.2e—1
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is slightly better. After 100 iterations, the unpreconditioned
residual is the smallest. In conclusion, it is really difficult
to pinpoint one particular preconditioner as performing best
for our WRF model. The fact that each solver leads to a resid-
ual that first decreases and then starts to increase requires
further investigation. We think that this behavior is due to
the large approximation errors made in computing first- and
second-order information. We are working with a 4D-Var
analysis that is not optimal and with adjoint models that are
incomplete. Moreover, we employ Gauss—Newton approxi-
mation of the 4D-Var Hessian, and the ignored higher-order
terms may be non-negligible at the suboptimal solution.
Other errors are associated with the way WRF deals with
boundary conditions. Our methodology is affected by all
these factors, and the problem cannot be solved to a high
degree of accuracy without improving the quality of each of
these elements.

6 Conclusions

In data assimilation, the sensitivity of a forecast aspect to
observations provides a quantitative metric of the impact
each data point has on reducing forecast uncertainty. This
metric can be used in hindsight to prune redundant data, to
identify faulty measurements, and to improve the parame-
ters of the data assimilation system. The metric can also be
used in foresight to adaptively configure and deploy sensor
networks for future measurements.

This work provides a systematic study of computational
strategies to obtain sensitivities to observations in the con-
text of 4D-Var data assimilation. Solution efficiency is
of paramount importance since the models of interest in
practice are large-scale and the computational cost of sensi-
tivities is considerable; moreover, in an operational setting,
the sensitivities have to be solved in faster than real time
(e.g., for dynamically deploying new sensors).

The cost of computing sensitivities to observations is
dominated by the solution of a large-scale linear system,
whose matrix is the Hessian of the 4D-Var cost function. In
practice, this matrix is available only in operator form (i.e.,
matrix—vector products obtained via second-order adjoint
models).

The main contributions of this paper are to formulate
the computational challenges associated with sensitivities
to observations and to present solutions to address them.
We consider a set of matrix-free linear solvers, build spe-
cific preconditioners, and compare their performance on
two numerical models. For the SWE test, the results are
very promising: certain preconditioners as well as the multi-
grid approach lead to significant efficiency improvements
in the solution of the linear system. The results for the
WREF test are less clear-cut: preconditioning brings only a
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modest improvement, and we attribute this to the limited
accuracy with which derivatives are computed by the (cur-
rently incomplete) WRF adjoint model. Future work with
WRF should focus both on finding better preconditioners
and on developing a more accurate adjoint model.
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