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Multigrid Methods

Convergence Proof and Analysis
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Fixed Point Iterations
First we make some general observations about fixed point iterations.
Consider the equation Ax b=  and the splitting ( )A A P P= − + . 
We get ( ) ( )1 1 1 1m m m mPu P A u b u I P A u P b− − − −= − + ⇔ = − + . 
 
Now assume we pick some matrix C  that may be singular. We define

( ) ( )1 1 1m m mu I CA u Cb I CA u CAA b− − −= − + = − +  
 
Let ( ) ( )G I CA I G CA≡ − → − = . This gives the iteration 

( )
( )( )
( )

1 1

0 2 1 1

0 1

m m

m m

m m

u Gu I G A b
G u I G G G I G A b
G u I G A b

− −

− −

−

= + −
= + + + + + −
= + −

 

This requires no assumptions on C  or G , and the above holds 
independent of the convergence of the iteration. 
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Fixed Point Iterations
(1) ( ) ( )1 1 0 1m m m mu Gu I G A b G u I G A b− − −= + − = + −  
 
If ( ) 1Gρ < , then ( ) ( ) 11I G CA −−− ≡  exists, 1C −  must exist, and 
the iteration converges: ( ) ( ) 1 1I G u I G A b u A b− −− = − ⇒ = . 
 
We can define such an iteration for any G , and this always 
corresponds to some C  (which can be computed from G  and A). 
 
So, if show some complicated iteration (read ‘MG’) is of type (1), and 
we show ( ) 1Gρ < , this iteration converges to the solution.  
 
Also, m  iterations are equivalent to one ‘m-step’ iteration: mG G= , 
( )0 0u u= , ( )1 mu u= , and setting ( ) ( )(1) 0 1u Gu I G A b−= + −  
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Fixed Point Iterations
Next, we consider combining multiple iterations into a single fixed 
point iteration. Multigrid algorithms are of this type.  
 
We carry out a sequence of two fixed point iteration steps 
(where each may be multiple steps of a particular iteration) 
( ) ( ) ( )1 0 1

1 1u G u I G A b−= + −  
( ) ( ) ( )2 1 1

2 2u G u I G A b−= + −  

Substitution now gives 
( ) ( ) ( ) ( )

( ) ( )

2 0 1 1
2 1 2 1 2

0 1
2 1 2 1

u G G u G I G A b I G A b

G G u I G G A b

− −

−

= + − + −

= + −
 

Again, the resulting iteration can be considered a (single) fixed point 
iteration with a new iteration matrix ( 2 1G G ). 
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The Two-Grid Algorithm
First, consider one iteration of the two grid algorithm for h hL u f= .
Vector superscripts indicate the partial steps in this single iteration. 
 
Apply 1m  iterations with 1G  to ( )0

hu : ( ) ( ) ( )1 11 0 1
1 1
m m

h h hu G u I G L f−= + − . 
 
(Coarse grid correction) 
Compute the residual: ( ) ( )1 1

h h hr b L u= − .  
Restrict residual to the coarse grid: ( ) ( )1 1H

H h hr I r= .  
Do a direct solve for the coarse grid error: ( ) ( )1 1

H H HL e r=Solve .  
Prolongate coarse grid error to fine grid: ( ) ( )1 1ˆ h

h H He I r= . 
Update approximate solution: ( ) ( ) ( ) ( ) ( )2 1 1 1 1 1ˆ h H

h h h h H H h hu u e u I L I r−= + = + . 
 
Apply 3m  iterations with 3G  to ( )2

hu : ( ) ( ) ( )3 33 2 1
3 3
m m

h h hu G u I G L f−= + − . 
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The Two-Grid Algorithm
The coarse grid correction can be written in a single step as
( ) ( ) ( )( ) ( ) ( )2 1 1 1
h h h h h h h h hu u C f L u I C L u C f= + − = − + , 

where 1h H
h H H hC I L I−= . 

 
This can also be written as  
( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 1

2 2h h h h h h h h h hu I C L u C L L f u G u I G L f− −= − + → = + − , 

where ( ) ( )1
2

h H
h h H H h hG I C L I I L I L−= − = − . 

 
This is again in the form of a standard fixed point iteration. 
 
Note that since hC  is singular this iteration will in general not be 
convergent. 



© 2003 by Eric de Sturler. All rights reserved.

The Two-Grid Algorithm
The combination of the fixed point iterations gives the following. 
( ) ( ) ( )1 11 0 1

1 1
m m

h h hu G u I G L b−= + −   
 
Substitution into the second iteration gives 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1

1 1

2 1 1
2 2

0 1 1
2 1 2 1 2

0 1
2 1 2 1

h h h

m m
h h h

m m
h h

u G u I G L b

G G u G I G L b I G L b

G G u I G G L b

−

− −

−

= + −

= + − + −

= + −

 

 
Substitution into the third iteration then gives 
( ) ( ) ( )

( ) ( )

3 3

3 1 3 1

3 2 1
3 3

0 1
3 2 1 3 2 1

m m
h h h

m m m m
h h

u G u I G L b

G G G u I G G G L b

−

−

= + −

= + −
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The Two-grid Algorithm
The iteration ( ) ( ) ( )3 1 3 13 0 1

2 2
m m m m

h h h h h h hu G G G u I G G G L f−= + −  
represents the entire two-grid algorithm. 
We refer to 3 1

2
H m m
h h hM G GG≡  as the two-grid operator.  

One iteration with H
hM  gives for the error: ( ) ( )3 0H

h h he M e= . 
 
For fast convergence we need to make ( )HhMρ very small (at the least 

( ) 1H
hMρ <  for convergence). As we have seen previously, we are 

mainly concerned with the smoothing factor (damping of the high 
frequencies), because the coarse grid correction (with exact solve) 
takes care of the low frequencies.  
 
In general, it is not hard to reduce high frequency error significantly 
using (variations of) standard fixed point iterations. 
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From Two-grid to Multigrid
Now, we define the multigrid algorithm recursively. We refer to the 
coarsest level as level 0 , the next finer level as level 1, and so on till 
the finest level, level l . 
 
Given γ , define the multigrid operator at level j , jM , as follows. 

0
1 1M M≡  (two grid operator – includes pre- and postsmoothing – ) 

2M : pre-smoothing, restrict residual to level 1, apply 1M  γ  times to 
the residual equation, prolongate approximate error to level 2, 
correct approximate solution, post-smoothing. 

3M : analogous (apply 2M  γ  times) 
Etc.  
This gives the following types of cycles for 1,2γ =  (V or W cycle). 
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Multigrid Cycles: γ = 1 (V-Cycle)

M2

M1
M1

M3

M2
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Multigrid Cycles: γ = 2 (W-cycle)

M1

M2

M1 M1

M3

M2 M2
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From Two-grid to Multigrid
The two-grid algorithm is the main vehicle for designing multigrid 
algorithms. This is important, because analyzing a multigrid algorithm 
(over many levels) as a whole is obviously very complicated. 
 
It is intuitive that replacing the direct solve in the two-grid algorithm 
by an accurate solve using (multiple cycles of) multigrid leads to an 
algorithm that behaves almost like the two-grid algorithm. 
 
We can make this precise by using the previously derived results to 
show that replacing the direct solve by multigrid leads to a 
perturbation of the two-grid operator. If the two-grid operator has 
small norm or spectral radius and the perturbation is small we can 
show that the multigrid operator converges and has almost the same 
rate of convergence as the two-grid algorithm.  
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From Two-grid to Multigrid
Now, replace the direct solve in the two-grid algorithm at level l ( hu ) 
by γ  cycles of the multigrid algorithm at level 1l −  ( Hu ), denoted by 
the operator 1lM −  (precise definition follows). The earlier discussion 
shows the following holds independent of the choice of 1lM − . 
The coarse grid correction now runs as follows. 
 
Compute residual and restrict: ( ) ( )1 1

l l lr f Lu= − ; ( ) ( )1 1 1
1

l
l l lr I r−
− = . 

Approximate solve of coarse grid equation, ( ) ( )1 1
1 1 1l l lL e r− − −= : 

γ  iterations with 1lM − : ( ) ( )( ) ( ) ( )1 1 1 1
1 1 1 1 1 1ˆ ˆl l l l l le M e I M L rγ γ −

− − − − − −= + −
init

 

Taking ( )( )11ˆ 0le − =
init

 gives ( ) ( ) ( )1 1 1
1 1 1 1l̂ l l le I M L rγ −

− − − −= −  

Prolongate coarse grid correction to fine grid: ( ) ( )1 1
1 1ˆ ˆll l le I e− −= . 

Update solution: ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 1 1 1
1 1 1ˆ l l

l l l l l l l l lu u e u I I M L I rγ − −
− − −= + = + − . 
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From Two-grid to Multigrid
We rewrite ( ) ( ) ( ) ( )2 1 1 1 1

1 1 1
l l

l l l l l l lu u I I M L I rγ − −
− − −= + −  as follows 

( ) ( ) ( )( )2 1 1
l l l l lu u C f Lu= + − , where ( ) 1 1

1 1 1
l l

l l l l lC I I M L Iγ − −
− − −= − . 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 1 1 1

1 1
2 2

l l l l l l l l l l l

l l

u I C L u C f I C L u C L L f

G u I G L f

−

−

= − + = − +

= + −
 

 
In combination with pre- and post-smoothing the multigrid iteration 
at level l  becomes 
( ) ( ) ( )1 3 1 33 0 1

1 2 3 1 2 3
m m m m

l l lu G G G u I G G G L f−= + − , 

and the multigrid operator is defined as 1 3
1 2 3
m m

lM G GG= . 
 
Note that 1 1

1 1 1
l l

l l l l l lC C I M L Iγ − −
− − −= −  
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From Two-grid to Multigrid
Now we will define the multigrid operator recursively. At level 1 (one 
level above the coarsest grid) we define the multigrid operator as the 
two-grid operator. 
 

( )1 3 1 30 1 1 0
1 1 1,1 2,1 3,1 1,1 1 0 0 1 1 3,1

m m m mM M G G G G I I L I L G−≡ = = −  
 
At the higher levels we define the multigrid operator in terms of the 
multigrid operator at the next lower level. 
 

( )
( )( )

1 3 1 3

1 3

1, 2, 3, 1, 3,

1 1
1, 1 1 1 3,

m m m m
k k k k k k k k k

m k k m
k k k k k k k k

M G G G G I C L G

G I I I M L I L Gγ − −
− − −

= = −

= − −
 

 
If we take 0 0M =  the definition of kM  also holds for 1k = . 
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The Multigrid Algorithm
Now we would like to derive convergence rates for the multigrid 
algorithm from the two-grid algorithm (and prove convergence). 
 
We do this by assuming we get a good convergence rate for the two-
grid algorithm (small norm or spectral radius), and then use this to 
derive bounds on the spectral radius or norm of the multigrid 
algorithm. 
 
For level 1 this is easy! 
 
For level 1k >  we consider the multigrid operator as a perturbation 
of the two-grid operator at that level. 
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The Multigrid Algorithm
Two-grid operator (k ): ( )1 3 1 31

1, 2, 3, 1, 3,
k m m m m
k k k k k k k k kM G G G G I C L G− = = −  

 
Multigrid operator (k ): ( )1 3 1 3

1, 2, 3, 1, 3,
m m m m

k k k k k k k k kM G G G G I C L G= = −  
 
Note that 1 1

1 1 1
k k

k k k k k kC C I M L Iγ − −
− − −= − , and so 

 
( )
( )
( )

1 3

1 3

1 3 1 3

1, 3,

1 1
1, 1 1 1 3,

1 1
1, 3, 1, 1 1 1 3,

1 1
1 1

m m
k k k k k k

m k k m
k k k k k k k k k k

m m m k k m
k k k k k k k k k k k k

k k k
k k k k

M G I C L G

G I C L I M L I L G

G I C L G G I M L I LG

M A M A

γ

γ

γ

− −
− − −

− −
− − −

− −
− −

= −

= − +

= − +

= +
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The Multigrid Algorithm
Now assume that analysis of the two-grid algorithm (using (local) 
Fourier analysis, analysis of the grid transfer operators, etc.) gives  
 

1k
kM σ− <  for 1,2, ,k l= … . 

Furthermore, let 1
1 , 1,2, ,k k

k kA A C k l−
− < = … for  

 
This gives for the multigrid operators 

0
1 1M M σ= <  

1 2 2
2 2 1 1 1

2 1
1 2 1

M M A M A

A A M

C

γ

γ

γ

σ

σ σ

= +

≤ +

≤ +

 

So, we can define bounds recursively … 
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The Multigrid Algorithm
Let 1k

kM σ− <  and 1
1

k k
k kA A C−
− <  for 1,2, ,k l= … . 

 
Then k kM η≤ , where  

1η σ= , and 1k kC
γη σ η −= + , for 2, 3, ,k l= … . 

 
If in addition 4 1Cσ ≤  and 2γ = , we get 
 

1 1 4 2
2l
CM

C
ση σ− −≤ ≡ ≤ , for 1l ≥ . 

 
For 2γ >  we get (of course) better results. 
In general, 1C ≥ , but not much larger. For 1γ =  we do not get h -
independent convergence rates. This does not mean a V-cycle cannot 
be faster than a W-cycle for a given problem and algorithm. 
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The Multigrid Algorithm
In contrast to many of the convergence bounds we saw earlier, these 
bounds are generally sharp and can be made quite small. 
 
The proof shows (once more) that the two-grid algorithm is the 
cornerstone of the design of a multigrid solver. 
 
If we can put together an efficient two-grid algorithm with a small 
upper bound  on the norm (or spectral radius) independent of h , we 
will get good convergence. And the convergence will not deteriorate 
for 0h → .  
 
For most algorithms the cost of the multigrid cycle (at the finest 
level) is ( )O N , where N  is the number of unknowns (section 2.4.3). 
This means a fixed amount of work per unknown. 
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