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How to analyze smoothing behavior for more general problems and
relaxations: local mode (normal mode/Fourier) analysis.
In general computing eigenvectors/values is too hard (harder than
solvng a linear system)

The idea is to derive the smoothing factor from idealization of the
equations at a point (experiment to find worst point).

This separates the smoothing of the error from the other algorithmic
components. It also provides a optimal figure against which to compare
overall performance of algorithm.

Idealizations: 
Assume infinite domain
Assume equations are same everywhere
Assume relaxation scheme is linear process

Local mode analysisLocal mode analysis
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Error given by linear iteration: e(k+1) = Ge(k)

Now we assume the error consists of Fourier modes and we analyze
how relaxation acts on these modes (ideally no mixing of modes).
We should analyze the damping of the eigenvectors of the iteration
matrix. However, we assume that oscillating modes are approximately
eigenvectors (generally true); and apply smoothing analysis to these.

For discrete domain we have waves  with wavenumber wj = sin jk
n

.k = 1¢n
Now we replace  by  (continuous wavenumber) and consider waves k

n
 with .wj = exp(©j ) c (− , ]

Values  near  correspond to low frequency waves; values of  near 0
 correspond to high frequency waves.

Wavelength of mode  is .2 h

Local mode analysisLocal mode analysis
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Error at point  at iteration  : j k ej
(k) = A(k) exp(©j ), − < [ .

Goal is to find relation ,A(k + 1) = A(k)G( )
where  is called the amplification factor (for mode )G( )

This way we can analyze the convergence of the modes separately.
For convergence (of relaxation method) we need .G( ) < 1 for all

For MG only need damping of oscillatory modes: .G( ) < 1, 2 [ [

We define smoothing factor as .= max
2[ [ G( )

(slowest damping of oscillatory modes)

Local mode analysisLocal mode analysis
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Consider one-dimensional equation −uxx + cu = f

Central finite differences gives: −vj−1 + (2 + h2cj )vj − vj+1 = h2f j

Jacobi: vj
(k+1) = 1

2+h2cj
h2f j + vj−1

(k) + vj+1
(k)

weighted Jacoby: vj
(k+1) =

2+h2cj
h2f j + vj−1

(k) + vj+1
(k) + (1− )vj

(k)

For the error we get:

ej
(k+1) = uj − vj

(k+1) = uj − 2+h2cj
h2f j + vj−1

(k) + vj+1
(k) + (1 − )uj − (1− )vj

(k)

Since  satisfies the equation we have u uj = 1
2+h2cj

(h2f j + uj−1 + uj+1)

1D Example: Jacobi1D Example: Jacobi
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Substituting in expression for error uj = 1
2+h2cj

(h2f j + uj−1 + uj+1)

ej
(k+1) = uj − 2+h2cj

h2f j + vj−1
(k) + vj+1

(k) + (1 − )uj − (1− )vj
(k)

gives

ej
(k+1) =

2+h2cj
(h2f j + uj−1 + uj+1) −

2+h2cj
h2f j + vj−1

(k) + vj+1
(k) + (1− )ej

(k)

and finally

ej
(k+1) =

2+h2cj
ej−1

(k) + ej+1
(k) + (1 − )ej

(k)

1D Example: Jacobi1D Example: Jacobi
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Now substitute  for  and simplify expressionA(k) exp(©j ) ej
(k)

First we assume .c = 0

 becomesej
(k+1) = 2 ej−1

(k) + ej+1
(k) + (1− )ej

(k)

A(k + 1) exp(©j ) =

2 (A(k) exp(©(j − 1) ) + A(k) exp(©(j + 1) )) + (1− )A(k) exp(©j )

A(k) exp(©[j − 1] ) +A(k) exp(©[j + 1] ) = A(k) exp(©j )[exp(−© ) + exp(© )] =

A(k) exp(©j )[cos − ©sin + cos + ©sin ] =

A(k)2exp(©j ) cos

A(k + 1) exp(©j ) = 2A(k)2exp(©j ) cos + (1− )A(k) exp(©j ) =

A(k) exp(©j )[1− (1− cos )]

1D Example: Jacobi1D Example: Jacobi
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Using  we getcos = cos2 $ ( 2) = 1− 2sin2( 2)

A(k) exp(©j )[1− (1− cos )] = A(k) exp(©j )[1− 2 sin2( 2) ]

This gives the amplification factor

, for .A(k + 1) = A(k)[1− 2 sin2( 2) ] = A(k)G( ) − < [

These are the same convergence rates we saw for discrete
wavenumbers , corresponding to . k k = k

n
This is not generally the case, however.
From the above result we know that optimal weight is , which = 2

3
yields

= G( 2 ) = G(! ) = 1
3

1D Example: Jacobi1D Example: Jacobi
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Now we assume .c ! 0

 becomesej
(k+1) = 2+h2cj

ej−1
(k) + ej+1

(k) + (1 − )ej
(k)

A(k + 1) exp(©j ) = 2+h2cj
A(k)2exp(©j ) cos + (1− ) A(k) exp(©j ) =

A(k) exp(©j ) 1− + 2 cos
2+h2cj

=

A(k) exp(©j ) 1− 1− 2cos
2+h2cj

Result depends on . Typically take some fixed  for analysis:cj c
maximum or minimum  or worst case for amplification factor.cj

This gives for the amplification factor: this canG( ) = 1 − 1 − 2cos
2+h2c

be rewritten (for comparison) as

G( ) = 1 − (1 − cos ) + (1 − cos ) − 1 − 2cos
2+h2c

1D Example: Jacobi1D Example: Jacobi
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The amplification factor  can beG( ) = 1− 1− 2cos
2+h2c

rewritten (for comparison) as

G( ) = 1− (1− cos ) + (1− cos ) − 1− 2cos
2+h2c =

G0( ) + 1− cos − 1+ 2cos
2+h2c =

G0( ) + −1+ 2
2+h2c cos =

G0( ) − h2c
2+h2c cos

where  is  for the case .G0( ) G( ) c = 0

 only differs significantly from  if  is not tooG( ) G0( ) h2c
small.

1D Example: Jacobi1D Example: Jacobi
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For Gauss-Seidel we get

,ej
(k+1) =

ej−1
(k+1)+ej+1

(k)

2+h2cj

assuming carry out the relaxations from left to right (increasing j).

Again assuming  and  we getej
(k) = A(k) exp(©j ) c = 0

.A(k + 1) = exp(© )
2−exp(−© ) A(k)

So we have as amplification factor G( ) = exp(© )
2−exp(−© )

The graph of  shows the smoothing factor is obtained for .G( ) = 2

= G( 2 ) = i
2+i = 1

5 l 0.453

1D Example: Gauss-Seidel1D Example: Gauss-Seidel
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1D Example: Gauss-Seidel1D Example: Gauss-Seidel
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Contrary to what we saw for the Jacobi iteration, we notice that in this
case the eigenvalues on the infinite domain without boundaries are
different from the case with boundaries.

So the result only approximately gives the smoothing factors on finite
domains. As we can verify from the results from chapter 2.

1D Example: Gauss-Seidel1D Example: Gauss-Seidel
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We can apply local mode analysis analogously to
two-dimensional problems.

We represent the error as  ejm
(k) = A(k) exp( ij 1 + im 2)

where  and  run in  and  direction, and  and j m x y 1 2
represent waves in  and  direction.x y

Now we look for recurrence:  whereA(k + 1) = G( 1, 2)A(k)
again

 is amplification factor corresponding to twoG( 1, 2)
wavenumbers.

The oscillatory modes are modes that are oscillatory in either
one direction or both.

Local mode analysis for 2DLocal mode analysis for 2D
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Consider −uxx − uyy + cu = f

Discretization: −ujm−1 − uj−1m + (4+ h2cjm )ujm − uj+1m − ujm+1 = h2f jm

So weighted Jacobi iteration:

vjm
(k+1) =

4+h2cjm
h2f jm + vjm−1

(k) + vj−1m
(k) + vj+1m

(k) + vjm+1
(k) + (1− )vjm

(k)

For error this gives

ejm
(k+1) =

4+h2cjm
ejm−1

(k) + ej−1m
(k) + ej+1m

(k) + ejm+1
(k) + (1− )ejm

(k)

For c = 0

ejm
(k+1) = 4 ejm−1

(k) + ej−1m
(k) + ej+1m

(k) + ejm+1
(k) + (1− )ejm

(k)

2D Example: Jacobi2D Example: Jacobi
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Analyze case c = 0
ejm

(k+1) = 4 ejm−1
(k ) + ej−1m

(k) + ej+1m
(k) + ejm+1

(k) + (1− )ejm
(k)

ejm
(k+1) = 4 A(k)[exp ©[j 1 + (m − 1) 2] + exp ©[j 1 + (m + 1) 2] +£] + (1− )A¢

4 A(k) exp ©[j 1 +m 2](2cos 2 + 2cos 1) + (1− )A(k) exp ©[j 1 +m 2] =

A(k) exp ©[j 1 +m 2](1− [1− 1
4(2cos 2 + 2cos 1)] )

2cos 1 + 2cos 2 = 2 1− 2sin2 1
2 + 2 1− 2sin2 2

2 =

4− 4sin2 1
2 − 4sin2 2

2

A(k + 1) = A(k) 1− sin2 1
2 + sin2 2

2

G( 1, 2) = 1− sin2 1
2 + sin2 2

2

2D Example: Jacobi2D Example: Jacobi
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Analyze case c ! 0

ejm
(k+1) = 4+h2cjm

ejm−1
(k) + ej−1m

(k) + ej+1m
(k) + ejm+1

(k) + (1 − )ejm
(k)

ejm
(k+1) = A(k) exp ©[j 1 +m 2] 1− + 4+h2c(2cos 2 + 2cos 1)

G( 1, 2) = 1− + 4+h2c(2cos 2 + 2cos 1)

Alternatively

G( 1, 2) = 1− + 4+h2c(2cos 2 + 2cos 1) =

1− + 4 (2cos 2 + 2cos 1) − 4 (£) + 4+h2c(£) =

G0( 1, 2) + (2cos 2 + 2cos 1) − 4 + 4+h2c =

G0( 1, 2) − 4
h2c

4+h2c (2cos 2 + 2cos 1)

2D Example: Jacobi2D Example: Jacobi
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Convection-diffusion exampleConvection-diffusion example

-uxx+bux+cu=f

We solve several instances of the following equation

for various values of b, c, and h, and various choices
in the multigrid algorithm.

We show how smoothing analysis helps guide choices 
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Convection-diffusion exampleConvection-diffusion example
-uxx+500ux=0, h=1/64, nrel=10,

1.  =0.5, injection
2.  =0.5, full weighting
3.  =0.1, injection
4.  =0.1, full weighting (43)
5.  =0.05, injection (41)
6.  =0.05, full weighting (34)
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Convection-diffusion exampleConvection-diffusion example
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Amplification factors for the oscillatory modes and
various weights
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1. w=0.5, injection
2. w=0.5, full weighting
3. w=0.1, injection
4. w=0.1, full weighting (43)
5. w=0.05, injection (41)
6. w=0.05, full weighting (34)

# V-cycles

Convection-diffusion exampleConvection-diffusion example
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Amplification factors for the oscillatory modes,
=0.1, injection, and various values for c
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Convection-diffusion exampleConvection-diffusion example


