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Iterative Methods and Iterative Methods and 
MultigridMultigrid
Part 1: Introduction to Multigrid Part 1: Introduction to Multigrid 
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Initial Solution=-Error

DCT: [4.9, 0.27, 0.16, 0.061, -2.4, ...], O(0.1) or O(0.2)

2 12/02/09 MG02.prz



©2002 Eric de Sturler

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error SmoothingError Smoothing

Solution=-Error

After 20 Jacobi iterations with =1
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After 50 Jacobi iterations with =1
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Solution=-Error

After 1000 Jacobi iterations with =1

DCT: [2.4, , -1.1, , ... , , 0.35], =O(0.01), mainly O(1e-3)
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Convergence: , where is iteration matrixe(k) = Gke(0) G

.G = (I − P−1A)

u(k+1) = u (k) + P−1r (k) = u(k) + P−1(f − Au (k) ) =
(I − P−1A)u(k) + P−1f

Jacobi iteration matrix: (1− )I + RJ = (1− )I + D −1(D − A)
This gives: I − 2 A

Eigenvalues : I − 2A (I − 2 A) = 1− 2 (A)

Eigenvalues of A
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Eigenvalues of :A
Assume eigenvector close to physical eigenvector: vk = sin kj

n

Apply pointwise rule for Jacobi: 
Avj,k = − sin k(j−1)

n + 2sin kj
n − sin k(j+1)

n = 2sin kj
n − 2sin kj

n cos k
n =

 (so eigenvector indeed)2sin kj
n (1 − cos k

n )

1− cos k
n = 1− cos 2 k

2n = 1− (1− 2sin2( k
2n ) ) = 2sin2( k

2n )

2sin kj
n (1 − cos k

n ) = sin kj
n * 4sin2( k

2n )

This gives for the weighted Jacobi method: I − 2 A

 where (RJ, ) = 1− 2 sin2( k
2n ) 0 < [ 1

Always converges. Poor convergence for which modes?
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Some observations:
We see from experiments and analysis that convergence for smooth
and oscillatory modes is very different. More precisely, our analysis
(given some ) how much each mode is reduced in norm per
iteration (sweep over all points). 

Choosing appropriate  we can make all oscillatory modes converge
relatively fast. However, no choice for  exists that makes the
convergence for modes with small  fast.k

We could analyze this problem (Laplacian and Jacobi) easily
because eigenvectors  are the eigenvectors of iteration matrix A

. This is not generally the case.(I −D−1A)

The Jacobi iteration does not mix modes. The image of a sine wave
under the iteration matrix is same wave damped. Not general.
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Some terminology:

Consider vectors  on ‘normalized domain’: vk = sin jk
n [0,1]

where  and 1 [ k [ n − 1 0 [ j [ n

number of grid points: n
wavenumber: k
wavelength:  (since  grid points span domain of size )l = 2

k n 1
This also shows that mode  gives  full sine waves on domain.k k

2

We cannot represent waves on our grid with a wavelength less than 2h
This corresponds to wavenumber larger than . Such waves wouldn
actually be disguised as waves with longer wavelength: aliasing.

The wavenumber  corresponds to wavelength .k = n/2 l = 4/n l 4h
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We saw that it is important to distinguish oscillatory and smooth
waves:

Low frequency/smooth if 1 [ k < n/2
High frequency/oscillatory if n/2 [ k [ n − 1

A particular iteration scheme (splitting) and omega give rise to the
iteration

which means for the errorui+1 = (I − P−1A)ui + P−1f
ei+1 = (I − P−1A)ei = (I − P−1A) ie0

So if  and  then (I − P−1A) = V V−1 e0 = V 0 ei = k vk k
i

k,0

So analogous to analysis of Jacobi for Laplacian we can simplify the
analysis of the convergence by considering eigenvectors separately.
We can consider which  is best for which eigenvector (we can pick
only one per iteration) and if there’s a best  overall.
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Analyze which  best for Laplacian and Jacobi iteration:

  where (RJ, )= 1− 2 sin2( k
2n ) 0 < [ 1
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Standard Jacobi works for the middle range wavenumbers, but= 1
does poorly for both low and high frequency waves.

The choice  does well for a fairly large range of wavenumbers= 2/3

No  does well for the lowest frequencies.

In fact k = 1 : 1− 2 sin2( 2n ) l 1 − 2 sin2( h
2 ) l 1− h2 2

2

So for small  there will be no  that will make  smallh [ 1 1(R )

Worse, for as  (solving problem more accurately) the reductionh d 0
factor becomes closer and closer to .1
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Let’s give up on the low frequencies and focus on high frequencies.
(or at least postpone elimination of low frequency error)

oscillatory modes: n/2 [ k [ n − 1
We see that several values for  do well. To get ‘the best’ we require
again the equi-oscillating one (remember Chebyshev polynomials):

n/2(R ) = − n(R )

This gives 1− 2 sin2 (n/2)
2n = −1+ 2 sin2( n

2n ) w
1− 2 sin2( 4) = −1+ 2 sin2( 2 ) w
1− = −1+ 2 w
2 = 3 w
= 2

3

Worst convergence factor attained at .k = 2
3 : 1− 4

3 sin2( 4 ) = 1− 4
6 =

1
3
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So  and oscillatory components are reduced by at least ak [ 1/3
factor  each iteration.3

This factor is called the smoothing factor.
From its derivation we see that it is independent of .h

Suppose we wanted to reduce smooth modes by at least factor .1/2
1 − 2 sin2( h

2 ) l 1− 2
2h2

4 = 1−
2h2

2 d 2h2 = 1e = 1
2h2

Then for  we get:k = n/2

1 − 2
2h2 sin2( 4 ) = 1 − 1

2h2

So for  we will amplify the oscillating modes! Divergence.h < 1
2
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Waves on different grids Waves on different grids 

Consider wave with wavenumber :k

 on grid  uj,k
h = sin jk

n
h

Consider same wave on the coarse grid (half the points), by simply
taking value at every other point:

 on grid .uj,k
2h = u2j,k

h = sin 2jk
n = sin jk

n/2
2h

So kth mode on fine grid gives kth mode on coarse grid.

Should not be surprising since kth mode is wave with wavelenght ,2
k

which does not depend on .n
Another way to see this is that we have half the number of points and
half the number of waves.
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The oscillatory waves on , which has  points, are waves with2h n/2
wavenumbers .n/4 [ k < n/2− 1

Since wave number does not change, the modes with wavenumber 
 become oscillatory. So half the smooth modes on n/4 [ k < n/2 h

become oscillatory on . The other half remain smooth (but less2h

smooth than before).

The oscillatory modes on the fine grid cannot be represented on the
coarse grid.

What happens to the oscillatory modes on  when we go to ?h 2h

Why is this a problem for our solution algorithm?

Waves on different gridsWaves on different grids
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Given problem with with gives 33 grid points and .n = 32 j = 0¢32

We look at following waves on  and : 1/32 1/16

1) k = 5,14,26
2) k = 5,14,30

Notice that 
  is smooth on both grids (but less smooth on )k = 5 1/16

  is smooth on  and becomes oscillatory on k = 14 1/32 1/16

  are oscillatory on  and become smooth on k = 26,30 1/32 1/16

The effect for  is called aliasing: an oscillatory wave disguisesk = 26,30
itself as a smooth one. In fact a wave with wavenumber k > n − 1
appears as a wave with wavenumber .k = 2n − k

There is no way to distinguish the two on the given grid.

Waves on different gridsWaves on different grids
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We saw that our basic iteration or relaxation methods are good in
damping the oscillatory components of the error. They are not effective
on the smooth modes.

So the idea is to use relaxation on the fine grid until oscillatory modes
are sufficiently reduced and convergence slows down. 

Then we move to the coarse grid where the (fine grid) smooth modes
are more oscillatory and hence more effectively reduced by relaxation.

We saw that the very smooth modes ( ) on the fine grid remaink < n/4
smooth on the coarse grid. Hence they will still be reduced slowly by
relaxation.

The natural answer to this is to move to the next coarser grid, etc.

Typically at some point a direct solver is used.

The basic idea behind MGThe basic idea behind MG
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Important question now is how do we move among the grids.

1) How do we use the solution from the coarser grids (that have
reduced or removed the smooth components of error) to get a better
solution on the fine grid?

2) How do we transfer the approximate solution from fine grid to
coarse grid and how do we derive the equations to solve on the
coarse grid? 

Grid transfer and coarse grid eq.sGrid transfer and coarse grid eq.s

32 12/02/09 MG02.prz



©2002 Eric de Sturler

Let’s derive equations for the coarse grid.

We want to compute a correction to the solution on the fine grid. That
means we must compute an approximation to the error.

The residual gives us an equation to compute the error: Ae= r

So we compute the residual at  and map it to . This can be doneh 2h

in many ways, but for the moment we stick to the simple trivial
injection we saw before: . This will provide our right hand side.r j

2h = r2j
h

Again to keep things simple we assume that the coarse grid operator is
the coarse grid discretization of the PDE (basically same operator as on
the fine grid):  (fine grid ).A2h Ah

So we have the equation: A2he2h = r2h

Grid transfer and coarse grid eq.sGrid transfer and coarse grid eq.s

33 12/02/09 MG02.prz



©2002 Eric de Sturler

Suppose we find a satisfactory approximation to the error . How doe2h

we use this to correct the fine grid approximation to the solution?

This operation is called interpolation or prolongation. Again many
possibilities exist. We will look at a simple one first. Clearly for the
points existing in both grids we can simply take the same values (just as
going from fine to coarse grid). For the intermediate points we use
linear interpolation. An important rationale for this is the following.

Assume the error on the fine grid is smooth. Further assume that we
have the exact coarse grid error on the coarse grid. Linear interpolation
of the coarse grid error on the fine grid will give a smooth function.
Hence we may assume we get a good approximation to the fine grid
error.

On the other hand if the fine grid error is oscillatory we cannot hope to
get a good approximation (hence  should be smooth).eh

Grid transfer and coarse grid eq.sGrid transfer and coarse grid eq.s
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The interpolation or prolongation operator is represented by .I 2h
h

We will represent the restriction operator by .I h
2h

Assume  is even, ( ) grid points, and we ignore the boundary pointsn n + 1
and assume zero (Dirichlet) boundary conditions. Then we need to map
from coarse grid points  to fine grid points :1¢n

2 − 1 1¢n − 1

I 2h
h : ‘

n
2−1 d ‘n−1 = 1

2

1
2
1 1

2
1
•

The operator takes the coarse grid value at even grid points and
averages values at neighboring points for the odd points. If we include
the points on the boundary it would copy the values (even points).

Grid transfer and coarse grid eq.sGrid transfer and coarse grid eq.s
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We will discuss two restriction operators: I h
2h

Injection simply assigns the fine grid values to the corresponding coarse
grid variables:

I h
2h : ‘n−1 d ‘

n
2−1 =

1 0 0 0 0
0 0 1 0 0 £
0 0 0 0 1

§ •

Another restriction operator is so-called full-weighting.
Here the values at the coarse grid points are taken as weighted
averages of their (immediate) neighbors. The full weighting operator is
a scaled transpose of the linear interpolation (prolongation) operator.

(compare with the domain decomposition operators)

Grid transfer and coarse grid eq.sGrid transfer and coarse grid eq.s
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Full weighting at gives for a coarse grid variable:

vj
2h = 1

4 v2j−1
h + 2v2j

h + v2j+1
h

Written as a matrix operator (for whole grid) this gives

I h
2h : ‘n−1 d ‘

n
2−1 = 1

4

1 2 1
1 2 1

•

Note that all these steps are very easy to implement as local operators
at each point.

Grid transfer and coarse grid eq.sGrid transfer and coarse grid eq.s
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We now have all the steps to put our first multigrid algorithms together.

Two grid algorithm:  (on )Au = f h

: Do relaxations on  starting with some initial guessh k1
h Ahuh = fh

rh = fh −Ahuh; r2h = I h
2hrh;

: Solve (directly) 2h A2he2h = r2h

êh = I 2h
h e2h; uh = uh + êh;

: Do relaxations on  starting with new .h k2
h Ahuh = fh uh

A direct solver is used for . Obviously for very large systemsA2he2h = r2h

this is not practical. However, the two grid algorithm is often used for
analysis.

An obvious alternative for a direct solver is to do another coarse grid
correction on  and so on (CS students feel the recursion coming).4h

2-Grid algorithm2-Grid algorithm
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We may also use an iterative solver (another couple of relaxation sweeps)
on : . This can in fact already be surprisingly effective.2h A2he2h = r2h

We typically use a direct solver at some level (when the number of
variables gets sufficiently small).

2-Grid algorithm2-Grid algorithm
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V-cycle MG algorithm: (on )Au = f h

: Do relaxations on  starting with some initial guessh k1
h Ahuh = fh

rh = fh −Ahuh; f2h = I h
2hrh;

: Do relaxations on  starting with zero guess2h k1
2h A2hu2h = f2h

r2h = f2h − A2hu2h; f4h = I 2h
4hr2h;

and so on for coarser and coarser grids

: Solve (directly)  (suff. iterations make direct solve)L h ALhuLh = fLh;
e(L−1)h = I L h

(L−1)huL h;
: (L−1)h u(L−1)h = u(L−1)h + e(L−1)h;

Do relaxations on   using new k2
(L−1)h A (L−1)hu(L−1)h = f (L−1)h u(L−1)h

and so on for finer and finer grids

:h uh = uh + eh;
Do relaxations on  starting with new .k2

h Ahuh = fh uh

V-cycle variationsV-cycle variations
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Let’s experiment:

V-cycle variationsV-cycle variations
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