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Iterative Methods and Iterative Methods and 
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Part 3: Preconditioning: Based on Part 3: Preconditioning: Based on 

Domain DecompositionDomain Decomposition
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Significant parts of this discussion come from the (excellent) book

Barry Smith, Petter Bjørstad, and William Gropp,

Domain Decomposition, Parallel Multilevel Methods for Ellipitic Partial Differential

Equations, Cambridge, 1996.

See chapter 10 in Meurant.

Section 10.2 discusses multiplicative and additive Schwarz methods for

domain decompositions with overlap.

Section 10.4 discusses substructuring or Schur complement methods for

domain decompositions without overlap. It also surveys the many

proposed choices for preconditioning the Schur complement.

Domain Decomposition BookDomain Decomposition Book
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Domain decomposition methods are based on the idea that we can

approximate the effect of  by solving over subdomains for theA

restrictions of  to those subdomains and combining the solutionsA

in a clever way. Then iterate till we have a solution that is

sufficiently accurate.

We discuss two basic ways of doing this:

1) with domains that have some overlap

2) with domains that do not have an overlap
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Overlapping domain methodsOverlapping domain methods

The basic idea (Schwarz):

Consider PDE  on domain  with  on boundary .Lu = f � u = g Ø�

Choose approximate solution  on  and solve g1 �1

 in  and  on  and  on .Lu1 = f �1 u1 = g Ø� 3 Ø�1 u1 = g1 �1

This gives approximate solution  on  and we solveg2 �2

 in  and  on  and  on .Lu2 = f �2 u2 = g Ø� 3 Ø�2 u2 = g2 �2

Solution found if .Lu1 = f, Lu2 = g, and u1 h u2

Originally introduced by H. A. Schwarz (1870) to prove existence of

solutions to elliptic problems on complicated domains.
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Assume overlap large enough that equations for nodes in  are�1\�2

not coupled with equations for nodes in .�2\�1

Order equations: nodes in  first, then nodes in , and  �1\�2 �1 3�2

then nodes in .�2\�1

Equations: .
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Need starting guess on  (nodes coupling to ):�2\�1 �1 3�2

Solve for subdomain 1, then for subdomain 2, and so on.

Matrix notationMatrix notation
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Solve problem on subdomain 1 using data from subdomain 2
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Solve problem on subdomain 2 using data from subdomain 1
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Note that we can consider this iteration as a special case of 

Block Gauss-Seidel (with overlap).

Multiplicative SchwartzMultiplicative Schwartz
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Introduce  (including overlaps) and .R1 : R1

T

u = u�
1

R
i
u
�

i

=

u
�

1

T

0

Define  analogously.R2

Note .A�
i

= R
i

T

AR i

Then multiplicative Schwartz becomes:

u
(k+1/2)

= u
(k)

+ R1
(R

1

T

AR1
)
−1

R1
(f − Au

(k) )

u
(k+1)

= u
(k+1/2)

+R2
(R

2

T

AR2
)
−1

R2
(f −Au

(k+1/2))

Now define B i =Ri
(R

i

T

AR
i
)
−1

R
i

u
(k+1)

= u
(k)

+
(B1 +B2 −B2AB1

)(f −Au
(k))

= u
(k)

+B(f − Au
(k) )

solves  (preconditioned equation) � Krylov method.BAu = Bf

Algebraic frameworkAlgebraic framework

©2000 Eric de Sturler

Using Krylov method to solve , compute efficiently :BAu = Bf v = Br

1) v = B1r

2) v = v + B2(r −Av)

For CG or MINRES (  HPD) we want to symmetrize preconditioner:A

u
(k+1/3)

= u
(k)

+ B1
(f − Au

(k)
)

u
(k+2/3)

= u
(k+1/3)

+ B2
(f − Au

(k+1/3)
)

u
(k+1)

= u
(k+2/3)

+ B1
(f −Au

(k+2/3)
)

This is equivalent to 

u
(k+1)

= u
(k)

+ (B1 + B2 − B2AB1 − B1AB2 + B1AB2AB1
)(f −Au

(k)
)

with corresponding preconditioner

B = (B1 + B2 − B2AB1 − B1AB2 + B1AB2AB1
) =

B1 + (I − B1A)B2
(I −AB1

)

Algebraic frameworkAlgebraic framework
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These corrections are in fact projections of the error to respective

subspaces (orthogal if  SPD):A

Let , then P i = B iA R
i
(R

i

T

AR
i
)
−1

R
i

T

r = B
i
r = B

i
AA

−1

r = P
i
e

P
i

2

= R
i
(R

i

T

AR
i
)
−1

R
i

T

AR
i
(R

i

T

AR
i
)
−1

R
i

T

A = R
i
(R

i

T

AR
i
)
−1

R
i

T

A = P
i

Hence  is a projector onto P i range(R i
)

Furthermore, 

.…Pix, y A = y
T

AP ix = y
T

ABiAx = (B iAy)
T

Ax = …x,Piy A

So,  is symmetric (self-adjoint) w.r.t. A-inner product;P i

therefore,  is an orthogonal projector (A-ip) onto .P i range(R i
)

This means that  is the best approximation in  to the error, inPie range(R i
)

the A-norm.

Algebraic frameworkAlgebraic framework

©2000 Eric de Sturler

The multiplicative Schwartz method can now be written as

u

(k+1/2)

= u

(k)

+ P1e

(k)

u

(k+1)

= u

(k+1/2)

+ P2e

(k+1/2)

So the algorithm at each step projects the error onto a subdomain

(subspace) and adds the correction to the approximation on the

subdomain. Note that this can be done without knowing the error.

The procedure of restriction to a subspace, solving a local (small)

system and mapping the result back to the original space  underlies

most domain decomposition/multigrid/multilevel methods.

The selection of the appropriate subdomains plays an important

role in the domain decomposition method.

Algebraic frameworkAlgebraic framework
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An alternative to the so-called multiplicative Schwarz method is the

additive Schwarz method.

This method typically converges more slowly, but has better parallel

properties and is symmetric if  is. Just as the multiplicativeA

Schwarz method is Gauss-Seidel-like, the additive method is Jacobi-

like.

u
(k+1)

= u
(k)

+ (B1 + B2
)(f − Au

(k)
)

Note that this iteration is derived from simultaneously solving

u
�

1

(k+1)

= u
�

1

(k)

+
(R

1

T

AR1
)
−1

R
1

T
(f −Au

(k)
)

u
�

2

(k+1)

= u
�

2

(k)

+ (R
2

T

AR2
)
−1

R
2

T
(f −Au

(k)
)

where the results in the overlap region are added.

Additive SchwartzAdditive Schwartz
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The method is Jacobi-like because we (can) solve for the blocks of

equations simultaneously.

It is also easy to see that each projection is symmetric if  is.A

Since, we solve for each block independently the method is easy to

parallelize and has good parallel performance.

In contrast, the multiplicative Schwarz method requires each

subdomain solve (except the first) to wait for the results of the

previous one. 

This problem can be reduced by relaxing the strict ordering of

domains that do not share any unknowns. Assign colors to the

subdomains in a such a way that no two subdomains that share

unknowns have the same color. Then updates all subdomains with

the same color simultaneously.

Additive SchwartzAdditive Schwartz
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The additive Schwartz method in this basic form does not converge,

in general. Therefore, the method is always applied with either

acceleration (Krylov method) or damping.

Generally we would like to work on multiple domains rather than

just two. What would be an obvious extension?

Additive SchwartzAdditive Schwartz
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For multiple domains both the multiplicative Schwartz method and

the additive Schwartz method have obvious extensions.

Multiplicative (strict version):

u
(k+1/p)

= u
(k)

+ B1
(f − Au

(k)
)

u
(k+2/p)

= u
(k+1/p)

+ B2
(f −Au

(k+1/p)
)

...

u
(k+1)

= u
(k+(p−1)/p)

+ Bp
(f −Au

(k+(p−1)/p)
)

This gives: 

ande
(n+1)

= (I − BpA)(I − Bp−1A)
£

(I − B1A)e
(n)

.B = [I − (I − BpA)£(I − B1A)]A
−1

= A
−1
[I − (I − BpA)

£
(I − B1A)]

Obviously  is not needed for implementation.A
−1

More subdomainsMore subdomains
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Additive Schwartz for multiple subdomains can be written as

u
(k+1)

= u
(k)

+B1
(f −Au

(k)
) +B2

(f −Au
(k)

) +£ +Bp
(f −Au

(k)
)

B = B1 + B2 +£ +Bp

More subdomainsMore subdomains
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Imagine dividing a large rectangular domain in many strips, each

couple with some overlap.

We solve the Laplace equation  with zero boundary conditions�u = 0

except at the east boundary where we set . Now we useu = 1

multiplicative Schwartz starting with the left(west)-most strip and

moving to the right or additive Schwartz. 

What will happen?

What is the minimum number of iterations to converge?

Convergence for many subdomainsConvergence for many subdomains
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At each step only one extra strip will get a nontrivial update.

Consequently, it takes at least #number of subdomains iterations to

converge.

The reason is the mismatch between the physics underlying elliptic

problems (diffusion, pressure, ...) and the solution procedure.

The essence of elliptic problems is that a boundary condition (or

local source term) eventually influences the solution over the entire

domain. So a solution procedure that only step-wise updates

neighboring regions is inherently bounded in its rate of convergence

by the ‘distance’ between regions.

We would like to do updates that have a more global effect:

A coarse grid (subdomain decomposition) correction t

Multi-level methods

Multilevel methodsMultilevel methods
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Multilevel methodsMultilevel methods

As we saw previously, in the many domain case we typically have

very slow convergence, because there is no global transfer of

information. 

This leads to slow convergence for low frequency functions, because

(apart from constant term) they almost satisfy the homogenous

differential equation.

Hence, we must look for a way to force quicker convergence of

those terms. To this end we introduce coarser levels (multilevel

method). This means we have fewer domains (typically) and so

better global coupling, and the low frequency modes look more

oscillatory.
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Consider a coarse ‘grid’ embedded in the fine grid.

 represents linear interpolation from coarse grid to fine gridR

 represents restriction from fine to coarse gridR
T

A simple coarse grid correction can be defined as

uF = uF +RAC

−1

R
T
(f −AFuF

)

Compute fine grid residual, restrict to coarse grid, solve coarse grid

equations, interpolate back to fine grid, and add correction.

However,  alone as preconditioner won’t work, because itRA
C

−1

R
T

has a large null-space. The null space mainly contains the high

frequency modes. Hence we need to augment this step with a fine

grid preconditioner (correction).

Multilevel methodsMultilevel methods
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Multilevel methodsMultilevel methods
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Call  the coarse grid preconditioner. For the fine grid BC = RA
C

−1

R
T

preconditioner we typically take a local operator, subdomain solves or

diagonal preconditioning (you can’t get more local than a point).

However, in principle any nonsingular preconditioner is possible.

Define some  and iteration becomes:BF

u
F

n+1/2

= u
F

n

+ BC
(f −AFuF

n )

u
F

n+1

= u
F

n+1/2

+BF
(f −AFuF

n+1/2)

Same form as before (2 subdomains), but very different construction.

 may be the entire multiplicative or additive Schwartz iteration.BF

Written as one step method iteration looks like 

u
F

n+1

= u
F

n

+
(BC +BF −BFAFBC

)(f −AFuF

n )

Multilevel methodsMultilevel methods
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Using the same operators or preconditioners we can also define an

additive two level method:

u
F

n+1

= u
F

n

+
(BC + BF

)(f − AFuF

n
)

Again the additive variant is always used with a Krylov method.

The coarse grid correction takes care of the low frequencies

(smooth modes) of the error. 

So  must be effective in damping the high frequency componentsBF

of the error: Schwarz smoothers (MG-like).

Schwarz smoothers are typically one level additive or multiplicative

overlapping domain decomposition methods.

We may apply the smoothing step more than once.

Multilevel methodsMultilevel methods

04/01/03 21-22 Krylov09.prz



©2000 Eric de Sturler

In two level Schwarz methods the fine grid preconditioner may be

either a additive or multiplicative (overlapping) Schwarz

method/preconditioner.

We then may combine the fine and coarse grid preconditioners in

either a multiplicative or additive way.

This gives rise to various combinations. 

Let the  denote the fine grid subdomain solves: B i R
i
(R

i

T

AR
i
)
−1

R
i

T

The coarse grid correction is given by RA
C

−1

R
T

Multilevel methodsMultilevel methods
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1. v = (RA
C

−1

R
T
+ �i B i

)r

two level additive Schwarz preconditioner

2. v = RA
C

−1

R
T
r

...v = v + B1
(f − AFv) v = v + Bp

(f − AFv)

two level multiplicative Schwarz preconditioner

3. v = B1r

...v = v + B2
(f − AFv) v = v + Bp

(f − AFv)

v = v + RA
C

−1

R
T
r

two level hybrid Schwarz preconditioner

4. v = �i Bir

v = v + RA
C

−1

R
T(r − AFv)

two level hybrid Schwarz preconditioner

Other variants, multiple smoothing steps, symmetric versions

Multilevel methodsMultilevel methods
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For nonsymmetric problems not necessary to have the restriction

and interpolation operators be each other’s transpose.

Possible, , where  is interpolation operator.BC = JA
C

−1

R J

However, generally best (theory) to have .J
T

= R

Many possibilities for coarse grid correction. 

Coarse grid problem and the transfer operators should be chosen

together. 

Rule of thumb: If one is chosen, take the other such that coarse grid

correction is as close as possible to (orthogonal) projection.

Multilevel methodsMultilevel methods

©2000 Eric de Sturler

Ax = S
i
A

i
x
i

Mesh PartitioningMesh Partitioning
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Now we will discuss methods based on nonoverlapping subdomains

These methods are also called substructuring methods

These methods actually have their roots in out-of-core direct

methods, and we look at those first

Consider the equations for two subdomains (uncoupled) and an

interface (appropriately ordered).

Ø�

�
1

�
2

�

Substructuring methodsSubstructuring methods
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Order the equations: first , then , and finally .�1 �2 �

A
11

0 A
13

0 A
22

A
23

A31 A32 A33

u
1

u
2

u3

=

f
1

f
2

f3

Suppose matrix too large to store at once. How to solve in pieces?

First eliminate block in last row in first column:

I

I

−A31A11

−1

0 I

A
11

0 A
13

0 A
22
A

23

A31 A32 A33

u
1

u
2

u3

=

I

I

−A31A11

−1

0 I

f
1

f
2

f3

A
11

0 A
13

0 A
22

A
23

0 A32 A33 − A
31
A

11

−1

A13

u
1

u
2

u3

=

f
1

f
2

f3 −A31A11

−1

f1

Substructuring methodsSubstructuring methods
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This last step only involved the first block of rows and the last one

In next step we eliminate block in last row second column:

I

I

0 −A32A22

−1

I

A
11

0 A
13

0 A
22

A
23

0 A32 A33 −A
31
A

11

−1

A13

u
1

u
2

u3

=

I

I

0 −A32A22

−1

I

f
1

f
2

f3 − A31A11

−1

f1

 where

A
11

0 A
13

0 A
22

A
23

0 0 S

u
1

u
2

u3

=

f
1

f
2

f3 − A31A11

−1

f1 −A32A22

−1

f2

S = A33 −A31A
11

−1

A13 −A32A22

−1

A23

Substructuring methodsSubstructuring methods
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This last step only involved the 2nd block of rows and the last one

We can now solve independently for  using the equation u3

(A33 − A31A
11

−1

A13 −A32A22

−1

A23
)u3 = f3 −A31A

11

−1

f1 −A32A22

−1

f2

The small (dense) matrix  is called the(A33 − A31A
11

−1

A13 −A32A22

−1

A23
)

Schur complement.

After we solve for  we can again solve independently the systemsu3

andA22u2 = f2 − A23u3

A11u1 = f1 − A13u3

Note that computing the Schur complement (and rhs) involve

subdomain solves. This allows the direct solution of very large

systems without ever having the entire matrix in core.

Substructuring methodsSubstructuring methods
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We may also solve the Schur complement equation iteratively.

Krylov methods only need matrix-vector product. This can be carried

out without forming the Schur complement explicitly!

 S h
(A33 − A31A

11

−1

A13 −A32A22

−1

A23
)

Major advantage because  dense and not necessarily small.S

For positive definite , the condition number of  at least as goodA S

as that of . In many cases, even much better.A

For many second order elliptic PDEs the condition number of A

grows  as , whereas the condition number of  grows only asO(1/h
2
) S

.O(1/h)

Substructuring methodsSubstructuring methods
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We can solve iteratively for and afterwards solveSu3 = fS

independently for other subdomains (obviously the approach can be

extended to many subdomains).

However, since we do subdomain solves anyway, we can solve for

other subdomains at the same time.

Krylov method for 

A
11

0 A
13

0 A
22

A
23

0 0 S

u
1

u
2

u3

=

f
1

f
2

fS

Substructuring methodsSubstructuring methods

04/01/03 31-32 Krylov09.prz



©2000 Eric de Sturler

We can further improve convergence by preconditioning the

equation  in Su3 = fS

A
11

0 A
13

0 A
22

A
23

0 0 S

u
1

u
2

u3

=

f
1

f
2

fS

For example Neumann-Dirichlet or Neumann-Neumann

preconditioners (see book Smith, Bjørstad, and Gropp).

This leads to number of iterations for convergence independent of h

(the mesh width).

Many other approaches/preconditioners based on the substructuring

idea.

Substructuring methodsSubstructuring methods
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Condition number of S h
(A33 − A31A

11

−1

A13 −A32A22

−1

A23
)

Note if  HPD then  HPD (proof?)A S

, where  and �(A) =
�max

�
min

�
max

= max
x

x
T

Ax

x
T
x

�
min

= min
x

x
T

Ax

x
T
x

Consider  such thatx

 A11x1 +A13x3 = 0 e x1 = −A
11

−1

A13x3

A22x2 +A23x3 = 0 e x2 = −A
22

−1

A23x3

Then 

x
T

Ax = x
3

T
(A31x1 +A32x2 +A33x3

) =

−x
3

T

A31A
11

−1

A13x3 − x3

T

A32A22

−1

A23x3 + x3

T

A33x3 = x
3

T

Sx3

Substructuring methodsSubstructuring methods
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Condition number of S h (A33 − A31A
11

−1

A13 −A32A22

−1

A23
)

Note if  HPD then  HPD (proof?)A S

, where  and �(A)
=

�max

�
min

�
max

= max
x

x
T

Ax

x
T
x

�
min

= min
x

x
T

Ax

x
T
x

Now we have

�min
(S) = min

x
3
!0

x
3

T

Sx
3

x
3

T

x
3

= min
x : x

3
!0

A
11
x
1
+A

13
x
3
=0

A
22
x
2
+A

23
x
3
=0

x
T

Ax

x
T
x
m min

x!0

x
T

Ax

x
T
x
= �min

(A)

Likewise, .�max
(S) [ �max

(A)

Hence .�(S) [ �(A)

Substructuring methodsSubstructuring methods
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Convergence of Mult. SchwarzConvergence of Mult. Schwarz
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Multilevel methodsMultilevel methods

As we saw previously, in the many domain case we typically have

very slow convergence, because there is no global transfer of

information. 

This leads to slow convergence for low frequency functions, because

(apart from constant term) they almost satisfy the homogenous

differential equation.

Hence, we must look for a way to force quicker convergence of

those terms. To this end we introduce coarser levels (multilevel

method). This means we have fewer domains (typically) and so

better global coupling, and the low frequency modes look more

oscillatory.
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