
Iterative Methods and Iterative Methods and 
MultigridMultigrid
Part 3: Methods based on the Part 3: Methods based on the 
two-sided Lanczos algorithmtwo-sided Lanczos algorithm

GMRES optimal in iterations but expensive in time and 
memory if many iterations required. Main cost is keeping all 
vectors and complete orthogonalization.

Can we devise an optimal method with a short recurrence?
No, unless (non-Hermitian) matrix very special.
(Faber&Manteuffel result)

However, we can construct short recurrence methods that are 
very good in most cases. 

Short Recurrence Methods? Short Recurrence Methods? 
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Find approximation to  in  such that .b range(x) b − xΩz

This gives  .zH(b − x) = 0u = zHb
zHx

If  no solution exists. zHx = 0

The quality of the approximation from this oblique projection depends
on the angle between the search space, , and the space thatrange(x)
defines the projection, .range(z)

More generally, the quality of an approximation from oblique
projection depends on the angles between the search space and the
space that defines the projection. 

Residual from oblique projection may be much larger than optimal.

b

x

z

ax

Oblique ProjectionOblique Projection

Two types of Krylov subspace methods (general matrices):
1. Orthogonal projection methods: optimal, but expensive (GMRES).
2. Oblique projection methods: cheap, but often converge poorly.
a. economize on optimal methods (restart or truncate)
b. create different space (BiCG):

Ax1

x1

b

r1

Q̃

r2

Ax2

x2

span{Ab,A2b,£,Amb}

span{b,Ab,£,Am−1b}

Solving 
Ax=b

span{b̃,AHb̃,£, (AH)m−1b̃}

residual rk=b-Axk is measure for 
error

Methods based on Oblique ProjectionMethods based on Oblique Projection
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In multiple dimensions the quality of the approximation from an oblique
projection depends on the canonical or principal angles between the search
space and the space that defines projection. 

The residual from an oblique projection may be much larger than the  
optimal residual.

Result may be very poor if one or more angles near ./2

Linear system: , Ax = b
   and   x c range(Vm) r = b −AVmyΩ range(Ṽm)

 Ṽm
H(b −AVmy) = 0 w Ṽm

HAVmy = Ṽm
Hb

Solve    system (small).m %m

Computation of  , , and  using short recurrences requiresṼm
HAVmyṼm Vm

special choices for .Ṽm

Methods based on Oblique ProjectionMethods based on Oblique Projection

In order to use a short recurrence we need to make special choices.
Given arbitrary  and  we generate two Krylov sequences:v1 ṽ1

 vi = Avi−1 − j<i jvj /æ.æ c Ki(A, v1)
 ṽi = AHṽi−1 − j<i jṽ j /æ.æ c Ki(AH, ṽ1)

Neither the vectors  nor the vectors  are orthogonal.vi ṽi
However,  for  and  by choice of  and .viHṽj = 0 i ! j viHṽi ! 0 i ˜i

We now have the following orthogonality results (analogous to CG):

  for  since , andAviΩṽj j < i − 1 (Avi)
Hṽj = vi

HAHṽj = vi
H

k=1
j+1

kṽk
  for .AHṽiΩvj j < i − 1

So we can generate two mutually orthogonal (º biorthogonal) sequences of
vectors using short recurrences. 

Note that in this case  is tridiagonal.Ṽi
HAVi

BiorthogonalityBiorthogonality
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Solve  choose    choose Ax = b; x0 d r0 = b −Ax0; r̃0;

Iterate:

m = r̃m& rm, m = r̃m& Arm/ m, m−1 = m−1
m

m−1
, m = − m − m−1.

  rm+1 = m
−1(Arm − mrm − m−1rm−1); ARm = Rm+1Tm;

  r̃m+1 = m
−1(A&r̃m − mr̃m − m−1r̃m−1); A&R̃m = R̃m+1Tm;

  xm+1 = − m
mxm − m−1

m xm−1 − m
−1rm;

R̃m
& Rm = m = diag( 0, 1,…, m−1);

xm+1 = x0 +Rmy d rm+1 = r0 − Rm+1Tmy; rm+1 z R̃m;

R̃m
& (r0 −ARmy) = 0 u 0e1 − nTny = 0 u y = Tn

−1e1;
rm+1 = Rm+1(e1 −Tm

Tm
−1e1);

BiCG (three-term recurrence)BiCG (three-term recurrence)

Using again an implicit decomposition of the tridiagonal matrix 
 we get a coupled two term recurrence that allows  us toTk = LkDkUk

discard old vectors.

 choose  and .x0 d r0 = b −Ax0; p0 = r0; r̃0 : r̃0
Hr0 ! 0 p̃0 = r̃0

For k = 1, 2,¢

k−1 =
r̃k−1
H rk−1

p̃k−1
H Apk−1

; xk = xk−1 + k−1pk−1;

rk = rk−1 − k−1Apk−1; r̃k = r̃k−1 − k−1AHp̃k−1;

k−1 =
r̃k
Hrk

r̃k−1
H rk−1

;

pk = rk + k−1pk; p̃k = r̃k + k−1p̃k;
End

Drawbacks of BiCG?

BiCG (coupled two-term recurrence)BiCG (coupled two-term recurrence)
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number of iterations
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Some of the most popular methods today are derived from BiCG:
CGS, BiCGstab, TFQMR, QMR, ...

Oops! (two choices of left starting vector)Oops! (two choices of left starting vector)

1. In general, method does not satisfy any (strict) minimization
property and hence may converge (very) erratically.
(In practice the method often converges surprisingly well -- this is not
a drawback--).

2. Two matvec.s per iteration, only one extends search space.

3. Need  which may be more expensive to work with  or may notAH

even be available (matrix-free implementations)

4. Breaks down without finding solution:

a. , which means  is invariantr̃k = 0 Kk(AH, r̃k )

b. , where  and .r̃k
Hrk = 0 r̃k ! 0 rk ! 0

c.  singular (only for coupled 2-term recurrence)Tk

Drawbacks of BiCGDrawbacks of BiCG
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If BiCG fails because  is singular, we may solve the systemTk

  in least squares sense:ær0æe1 − Tk
(k+1)%k

 rk = r0 −AVkyk = Vk+1 ær0æe1 − Tk
yk

 Minimize  as in GMRES (or MINRES).ær0æe1 −Tk
yk 2

Major difference:  is not (at all) orthogonal, hence not optimal.Vk+1

This least squares system always has a solution (removes one breakdown
condition).

Compared with GMRES we have .rk
Q

2 [ (Vk+1 )ærk
Gæ2

Unfortunately there is no bound (in general) for .(Vk+1)

QMRQMR

Cunning Plan (P. Sonneveld): If we only need for projection,K(AH, r̃0)
then all we need are the inner products with the vectors  and .r̃i p̃i

Since , we have r̃i =Ri(AH)r̃0

 .r̃iHri = [Ri(AH)r̃0]H[Ri(A)r0 ] = r̃0HRi
2(A)r0

Analogously, the other inner products are products of polynomials in .A
If we can find (easy) recurrences to represent the products of polynomials
times a vector (like ), then we only need  and we can discard theRi

2(A)r0 r̃0
Krylov space generated with .AH

Moreover we now compute approximations from Krylov space K2i(A, r0 )
using  matvecs. So , we no longer waste matvecs.2 % i

Finally, if  small, then typically  much smaller.Ri(A)r0 Ri
2(A)r0

Unfortunately, when  large ...Ri(A)r0

CGSCGS
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Since CGS ‘squares the residual’ the residual may be large when Ri(A)r0
not small. In fact, even when  small,  may not be.Ri(A)r0 Ri

2(A)r0

This may lead to very irregular (nervous) convergence behavior with large
peaks in the residual norm. This may ruin accuracy and sometimes
convergence. Nevertheless, for a long time CGS was the method of choice
for a large class of problems. 

Instead of squaring the polynomial, to avoid large peaks in CGS
convergence, we may multiply by another polynomial:

 , rk =Mk(A)Rk(A)r0

where,  is used to improve convergence and avoid peaks.Mk

For example, one-step minimum residual polynomial. This yields the
BiCGStab (Stabilized) method. Currently among the most popular Krylov
methods with GMRES and TFQMR (QMR squared).

CGSCGS

BiCGSTABBiCGSTAB
To avoid the large oscillations in CGS we try yet another cunning plan.
Take , with  the BiCG residual polynomial and rk =Mk(A)Rk(A)r0 Rk

 with  chosen (in step ) to minimize Mk = (1 − kz)£(1 − 1z) k k
.ærkæ2 = æ(I − kA)Mk−1Rk(A)r0æ2

This leads to BiCGSTAB (most cited paper in math in the 1990s - ISI).

Let  be the BiCG residual and  the BiCG search vector.Rk(A)r0 Pk(A)r0

We need recurrences for and rk =Mk(A)Rk(A)r0 pk =Mk(A)Pk(A)r0

Using the BiCG recurrence we see that

 rk = (I − kA)Mk−1(A)(Rk−1(A) − k−1APk−1(A))r0 d
 rk = (I − kA)(rk−1 − k−1Apk−1)

 pk =Mk(A)(Rk(A) + kPk−1(A))r0 d
 pk = rk − k(I − kA)pk−1

Rewriting the recurrences for  and  in terms of new vectors, and deriving ak k

formula for  yields the algorithm (see Section 7.13).k
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GMRES(m) with r=s=70GMRES(m) with r=s=70
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GMRES 30 3.57
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