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Not-quite restarted GMRES 
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Example: Restarted GMRES
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Restarted GMRES
Restarted GMRES often leads to slow convergence or even stagnation 
 
This poor convergence is caused by the loss of information when we restart the 
iteration from scratch – its hard to maintain orthogonality against vectors you’ve 
thrown away. 
 
We discuss several methods that try to remedy this problem by keeping selected 
information from the Krylov space or otherwise including extra information: 
 
• GMRES*/GMRESR (Vuik & van der Vorst) 
• Flexible GMRES (Saad) 
• GCRO (de Sturler & Fokkema, de Sturler) 
• GMRESDR (Morgan) 
• GCROT (de Sturler) 
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A more general GCR

GCR: Ax b=  
Choose 

0
x  (e.g. 

0
0x = ) and tolerance ε ; set 

0 0
r b Ax= − ; 0i =  

while 
2i

r ε≥‖ ‖  do 

 1i i= +      
i
r  adds search vector to 

1 0
( , )

i
K A r

−
 

 
1
;

i i i i
u r c Au

−
= =    

1i
Ar − extends 

1 0
( , )

i
K A Ar−  

 for 1, , 1j i= −…  do   (start QR decomposition) 
  *

i i j j i
u u u c c= −    Orthogonalize 

i
c  against previous 

j
c  and 

  *
i i j j i
c c c c c= −    update 

i
u  such that 

i i
Au c=  maintained 

 end do 
 

2 2
/ ; /

i i i i i i
u u c c c c= =‖ ‖ ‖ ‖  Normalize; (end QR decomposition) 

 *
1 1i i i i i

x x u c r− −= +    Project new 
i
c  out of residual and update 

 *
1 1i i i i i

r r c c r− −= −    solution accordingly; note 
i j
r c⊥  for j i≤  

end do 
 
What happens if 

1i i
c r

−
⊥   
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GCR with general search vectors

Improved GCR: take a better search direction than residual 
while 

2i
r ε≥‖ ‖  do 

 1i i= +    best new search direction is 
1i i

u e −=  (convergence) 
 ( ), 1i m i i
u P A r −=   better search direction, for example by linear solve 

 
i i
c Au=    rest of the algorithm stays the same 

 for 1, , 1j i= −…  do    
  *

i i j j i
u u u c c= −     

  *
i i j j i
c c c c c= −     

 end do 
 

2 2
/ ; /

i i i i i i
u u c c c c= =‖ ‖ ‖ ‖   

 *
1 1i i i i i

x x u c r− −= + ; *
1 1i i i i i

r r c c r− −= −     
end do 
 

( ), 1i m i i
u P A r −=  represents a polynomial generated by a Krylov method, for 
example GMRES again. More general choices are also possible. 
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GCR with general search vectors

The mathematics for the minimization stay the same for arbitrary 
m
U : 

Given 
0
x  and 

0 0
r b Ax= −  and set of search directions (m columns): 

m
U   

 
Update 

0m m
x x U y= +  (optimal in minimum residual sense) 

Compute 
m m
C AU=  and 

m m m
C R C=  (QR decomposition) 

Set 1
m m m
U U R−=   (typically not explicitly computed) 

 
We have 

m m
C AU=  and *

m m
C C I=  

 
Now taking 

0m m
x x U y= +  such that 

0m m m
r r C y C= − ⊥  gives 

 
 * * * *

0 0
0

m m m m m m
C r C r C C y y C r= − = ⇔ =   

Update solution and residual: 
 1

0 0
( )

m m m m
x x U y x U R y−= + = +  

 *
0 0m m m

r r C C r= −  
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GCR with general search vectors: GMRESR

So take GCR and improve by better approximation to error than residual 
 
Typically take a Krylov method to compute an approximation to 

1i
e −

. 
Any method is possible and we can vary these methods from one step to next 
Hybrid or nested method is referred to as GMRES* 
 
Mostly GMRES itself is taken, referred to as GMRESR (recursive) 
Most popular, because it is the most robust, especially if we only take modest 
number of iterations (cannot make residual worse in those steps) 
 
Still some potential problems: 
• Inner method is restarted GMRES; can still stagnate for hard problem.  
• If inner GMRES converges poorly, the outer optimization is not so useful 
• We solve two separate optimizations rather than one global one: not optimal

o Optimality 
k k
r C⊥  ignores in inner GMRES, so typically update that 

destroys orthogonality. Restored by outer correction, but often 
direction computed/evaluated that are removed in outer ,minimization. 

8

GCRO (GCR with inner orthogonalization)

Alternative: keep inner search directions orthogonal to 
k
C  

Augmented/Adapted Arnoldi:   *
0 0k k k

r r C C r= − ,   *
0 0k k k

x x U C r= +  
Set 

1 k k
v r r= , and iterate * *

1, 1i i i i k k i i i i
h v Av C C Av VV Av+ + = − −  

 
Recurrence: *

1 mm k k m m
AV C C AV V H

+
= +   or  

   ( )* *
1 mm k k m k k m m

AV C C AV I C C AV V H+− = − =  

 
Optimal update over ( )range [ ]

k m
U V : 

1 0k k m
x x U z V y+ = + +  

* *
1 0 0 1 1 mk k m k k k k k k m m

r r AU z AV y C C r v r C z C C AV y V H y+ += − − = + − − −  

( ) ( )* *
1 0 1 1 mk k k k m m k

r C C r C AV y z V r H yη+ += − − + −  

Choose y  and z  to minimize 
2k

r .  

Note that 
1k m

C V +⊥  and that optimal z  always makes 
k
C  part zero. 

So, only need to minimize ( )1 mk
r H yη −  as in standard GMRES; then pick z  
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GCRO vs GMRESR
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FGMRES

Flexible GMRES (FGMRES): a GMRES with general search vectors 
The general search vectors can be determined by an iterative solver, but usually 
presented as resulting from a variable preconditioner (really the same, of course). 
 
Given 

0
x , 

0 0
r b Ax= −  

Set 
1 0 0 2

/v r r=  and iterate 1 * 1
1, 1i i i i i i i i i

h v AK v VV AK v− −
+ + = −  

This gives 1
1i i i i

AK v V h−
+=  (

i
h  is column vector of Hessenberg matrix) 

Recurrence : 1 1 1 1
1 1 2 2 3 3 1 1m mm m m m m

A K v K v K v K v V H AZ V H− − − −
+ +

⎡ ⎤ = ⇔ =⎢ ⎥⎣ ⎦…  

 
Update 

0m m
x x Z y= +  such that 

02 2m m
r r AZ y= −  minimal 

 
We proceed as for GMRES: 

0 1 1 0 2 1 1 0 22 2 2
m mm m m

r AZ y V r V H y r H yη η+ +− = − = −‖ ‖ ‖ ‖  

And the final norm can be minimized by solving a small least squares problem 
just as for GMRES.  
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How to restart – What to keep

GMRES optimal in number of iterations, but very expensive in time and 
memory (unless convergence very rapid).

Limit resources: restart after m steps with best solution as initial guess or 
orthogonalize only against latest m vectors.

Unfortunately, these strategies can slow down convergence drastically and 
even prevent convergence.

Solution: keep some carefully selected subspace.

Various possible choices (and ways to use them).

Approx. invariant subspace. Based on assumptions on normality and 
spectrum. Not for general problems, but often works.

Optimality requires orthogonal projection. After making a correction in 
some subspace the importance of that subspace is determined by its 
contribution in maintaining orthogonality.

12

Convergence GMRES (motivational)

Consider Ax b= , and relate convergence to polynomials. 
 0m mx x z= +  where 2 1

0 0 0 0span{ , , , , }m
mz r Ar A r A r−∈ …  

 0 0 0 0span{ , , , }m
m mr r Az r Ar A r= − ∈ …  

 
Assume 1A U U −= Λ  (diagonalizable), then residual at step m  

( ) ( )
( )

( ) ( )
( )

0

1
0 0 00 1 0 1,

min min maxmin
m

m m
m mp p Az K A r

r Az p A r r U U p
λ

λ−

= = ∈Λ∈
− = ≤  

 
For normal matrix this bound is sharp. For highly nonnormal 
matrix this bound may not be useful. 
 
( )Uκ  small: convergence determined by minimal polynomial 

 
Clustered eigenvalues yield fast convergence: preconditioning 
 
Eigenvalues surrounding origin yields very poor convergence. 
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Convergence GMRES (motivational)

Consider again the bound on the residual norm 
 

( ) ( )
( )

( ) ( )
( )

0

1
0 0 00 1 0 1,

min min maxmin
m

m m
m mp p Az K A r

r Az p A r r U U p
λ

λ−

= = ∈Λ∈
− = ≤  

 
If ( )Uκ  is not large we can improve this bound by removing those 
eigenvalues that make 

( ) ( )
( )

0 1
min max
m

mp A
p

λ
λ

= ∈Λ
 large 

 
For PDEs these are often (but not always) the small eigenvalues. 
One way of doing this is to augment the Krylov space with the 
corresponding eigenvectors 
 
In general, we do not have the exact eigenvalues and eigenvectors 
but approximations. 
 
For strongly nonsymmetric problems this approach is dubious 

14

GMRESDR
For GMRES a similar ‘local’ convergence behavior as for CG can be 
derived. More complicated (see book) but basic idea remains the same:  
 
When a Ritz value nearly converged to eigenvalue the convergence 
behaves as if eigenvalue no longer in spectrum.  
 
In general outer eigenvalues (on boundary of spectrum) converge first. 
So, if eigenvalues contained in ellipse, ellipse slowly shrinks and 
convergence rate improves. 
 
We can improve this process and ‘steer’ the convergence of eigenvalues 
(eigenpairs) by exploiting the relation of GMRES to the Arnoldi method 
for eigenvalue (eigenpair) approximations. 
 
Restarted Arnoldi: Build Krylov space of size m, reduce to Krylov space 
that contains approximations to k<m eigenvectors. Extend Krylov space 
to size m again and repeat.  
 
We combine this with linear solver: GMRES-DR 
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look in the next subsection at some needed details about some of the deflated Krylov
methods. See [12] for more on deflated GMRES methods, including discussion of a
related approach by De Sturler [10].

2.3. Keeping the subspace a Krylov subspace. In this subsection, we look
at how an augmented subspace can still be a Krylov subspace. Notationally, we let
m be the maximum dimension of the subspace and k be the number of approximate
eigenvectors retained at a restart. Also, we let (θi, yi) be a Ritz pair. Harmonic Ritz
pairs [21, 31, 39, 27] are denoted as (θ̃i, ỹi). Let vi be an Arnoldi vector from the
Arnoldi recurrence [33]:

AVm = VmHm + hm+1,mvm+1e
T
m

= Vm+1H̄m.(2.1)

Note that Hm denotes an m by m matrix, while H̄m is m+1 by m. The ith coordinate
vector is ei. We refer to each pass through the Arnoldi iteration between restarts as
one “cycle.”

It was shown in [40] that when the Arnoldi method for eigenvalues is implicitly
restarted with unwanted Ritz values as the shifts, the new initial vector is a combi-
nation of the desired Ritz vectors. And as given in [24] (see also [42]), the first k
vectors of the new subspace are all combinations of the desired Ritz vectors. Thus
the subspace

Span{y1, y2, . . . , yk, vm+1, Avm+1, A
2vm+1, A

3vm+1, . . . , A
m−k−1vm+1}(2.2)

is the IRA subspace and is a Krylov subspace. Note that vm+1 is the last Arnoldi
vector from the previous cycle of Arnoldi but from [40] it is also the k + 1 Arnoldi
vector in the new cycle. It is also shown in [24] that subspace (2.2) is equivalent to

Span{y1, y2, . . . , yk, Ayi, A
2yi, A

3yi, . . . , A
m−kyi}(2.3)

for each i such that 1 ≤ i ≤ k. Thus subspace (2.2) contains Krylov subspaces with
each Ritz vector as the starting vector.

In a restarted GMRES method, let r0 be the residual vector from the previous
cycle or, equivalently, the right-hand side for the new cycle. The subspace used in
GMRES-E [23] is

Span{r0, Ar0, A
2r0, A

3r0, . . . , A
m−k−1r0, ỹ1, ỹ2, . . . , ỹk}.(2.4)

Thus approximate eigenvectors in the form of harmonic Ritz vectors are tacked on
at the end of the Krylov subspace. It appears that putting them at the beginning
would destroy the Krylov subspace. (If r0 is orthogonalized against the harmonic
Ritz vectors, then the next step of multiplying that vector by A appears to give an
entirely different vector than just Ar0.) However, as shown in [25] (see also [12]),
the approximate eigenvectors can go first. This was implemented in GMRES-IR
(following the approach for IRA). The approximate eigenvectors are combined in the
right way so that there is an Arnoldi recurrence that can then be extended. In fact,
subspace (2.4) is a Krylov subspace, though not with r0 as the starting vector. The
key is that the approximate eigenvectors are correctly chosen to be harmonic Ritz
vectors. Subspace (2.4) is equivalent to

Span{ỹ1, ỹ2, . . . , ỹk, Aỹi, A
2ỹi, A

3ỹi, . . . , A
m−kỹi},(2.5)
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for 1 ≤ i ≤ k, so it contains Krylov subspaces with each of the harmonic Ritz vectors
as starting vectors.

In Wu and Simon’s thick-restart Lanczos method [48], the Ritz vectors are put
in front in a simpler way. They are not combined and are not part of an Arnoldi
iteration. However, they can still be extended into the Krylov subspace (2.2). The
first k orthonormal basis vectors are different, but the whole subspace is the same.

3. GMRES with deflated restarting. We look at Wu and Simon’s approach
to restarting [48], but for the nonsymmetric case, and we adapt it for solving lin-
ear equations. The new approach is called GMRES-DR, for GMRES with deflated
restarting. We felt that name best describes what the method is trying to accom-
plish, although actually the term “deflated restarting” could be applied to all the
approaches mentioned in subsection 2.2. The FOM version will be called FOM-DR,
and it computes regular Ritz values while solving linear equations.

3.1. GMRES-DR. The first cycle of GMRES-DR is standard GMRES with r0
being the residual vector computed. At the end of the cycle, the k desired harmonic
Ritz vectors are computed. We let V be the orthonormal matrix whose columns
span the subspace. For the second cycle, the first k columns of V are formed by
orthonormalizing the harmonic Ritz vectors. Then r0 is orthogonalized against them
to form vk+1. From there, the rest of V can be generated with the usual Arnoldi
approach.

Note that this procedure does generate the Krylov subspace (2.4); see subsec-
tion 3.3. GMRES-DR gives the same results as GMRES-IR at every iteration (not
counting forming the first k columns of V ), and it is mathematically equivalent to
GMRES-E at the end of each cycle. We next give the algorithm. Note that because
the first k + 1 vectors of the new V are formed from the previous subspace, the or-
thonormalization can be done with short vectors of length m or m + 1. However, it
has been noticed that for numerical reasons, vk+1 needs to be reorthogonalized. We
have tested this successfully with no further reorthogonalization, but it seems likely
that there are cases where more reorthogonalization is needed. In the algorithm that
follows, we assume that the harmonic Ritz values are distinct. (See [25] for a little
discussion of the nondistinct harmonic Ritz value case.) We also assume there are at
least k finite harmonic Ritz values.

GMRES-DR
1. Start. Choose m, the maximum size of the subspace, and k, the desired

number of approximate eigenvectors. Choose an initial guess x0 and compute
r0 = b − Ax0. The recast problem is A(x − x0) = r0. Let v1 = r0/||r0|| and
β = ||r0||.

2. First cycle. Apply standard GMRES(m): generate Vm+1 and H̄m with the
Arnoldi iteration, solve min||c − H̄md|| for d, where c = βe1, and form the
new approximate solution xm = x0 + Vmd. Let β = hm+1,m, x0 = xm, and
r0 = b−Axm. Then compute the k smallest (or others, if desired) eigenpairs
(θ̃i, g̃i) of Hm + β2H−T

m emeTm. (The θ̃i are harmonic Ritz values; see [31]
or [27, p. 40] for this formula.)

3. Orthonormalization of first k vectors. Orthonormalize g̃i’s, first separating
into real and imaginary parts if complex, in order to form an m by k matrix
Pk. (It may be necessary to adjust k in order to make sure both parts of
complex vectors are included.)

4. Orthonormalization of k + 1 vector. First extend p1, . . . , pk (the columns of
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Pk) to length m+ 1 by appending a zero entry to each. Then orthonormalize
the vector c − H̄md against them to form pk+1. Note c − H̄md is the length
m+ 1 vector corresponding to the GMRES residual vector. Pk+1 is m+ 1 by
k + 1.

5. Form portions of new H and V using the old H and V . Let H̄new
k =

PT
k+1H̄mPk and V new

k+1 = Vm+1Pk+1. Then let H̄k = H̄new
k and Vk+1 = V new

k+1 .
6. Reorthogonalization of k + 1 vector. Orthogonalize vk+1 against the earlier

columns of the new Vk+1.
7. Arnoldi iteration. Apply the Arnoldi iteration from this point to form the

rest of Vm+1 and H̄m. Let β = hm+1,m.
8. Form the approximate solution. Let c = V T

m+1r0 and solve min||c − H̄md||
for d. Let xm = x0 + Vmd. Compute the residual vector r = b − Axm =
Vm+1(c− H̄md). Check ||r|| = ||c− H̄md|| for convergence and proceed if not
satisfied.

9. Eigenvalue computations. Compute the k smallest (or others, if desired)
eigenpairs (θ̃i, g̃i) of Hm + β2H−T

m emeTm.
10. Restart. Let x0 = xm and r0 = r. Go to 3.

At each cycle after the first, a recurrence somewhat similar to the Arnoldi recur-
rence (2.1) is generated:

AVm = Vm+1H̄m,(3.1)

where H̄m is upper-Hessenberg, except for a full leading k + 1 by k + 1 portion. Note
that Schur vectors can be computed in steps 2 and 9 instead of eigenvectors.

We now look briefly at how the expense and storage of GMRES-DR compares
to some previous methods. The main potential advantage of GMRES-DR compared
to regular restarted GMRES is in the convergence, but it also does need only m− k
matrix-vector products per cycle while GMRES(m) uses m. GMRES-DR can be
implemented with about the same length n storage as GMRES(m). GMRES-E is a
little higher in both expense and storage than GMRES-DR. About k extra vectors of
length n are normally used for GMRES-E.

GMRES-DR has about the same storage and expense requirements as GMRES-
IR. The advantage of GMRES-DR is in the simplicity of the algorithm, compared to
GMRES-IR. There is no QR iteration and no need for locking and purging to maintain
stability, as is done for IRA and in Le Calvez and Molina’s version of implicitly
restarted GMRES [6]. Experiments are given in section 5 showing potential problems
for GMRES-IR without lock and purge. GMRES-DR has no difficulties on the same
examples. For more, see [44] in which Stewart shows stability of related eigenvalue
methods.

3.2. FOM-DR. The main changes for an FOM version are that the small system
of linear equations Hmd = c, with c = V T

m r0 = βek+1, is solved in step 8 instead of
the small least squares problem, and the eigenvectors of Hm are computed in step 9.
(This gives regular Ritz vectors instead of harmonic ones.) Step 2 is similarly changed.
Also, the k + 1 column of Pk+1 in step 4 is just em+1 with no orthonormalization.
(The reorthogonalization in step 6 is still needed.)

3.3. The whole subspace is a Krylov subspace. As mentioned in subsec-
tion 2.3, it has been shown that the subspaces for GMRES-DR and FOM-DR are
Krylov subspaces [25]. However, the proofs involved implicit restarting. Here we give
more direct proofs.
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GMRES-DR / GCRO-DR

How do we get approximate eigenpairs? From the (augmented) 
Arnoldi recurrence. Let 1 mm mAV V H+= . The eigenpair 

approximation over the space ( )range mV  is given by 

H
m m m m mAV y V y V V AV y yθ θ− ⊥ ⇔ =   (note H

m m mH V AV= ) 

The approximate eigenpair ( ), mV yθ  is called a Ritz pair. 
Since the Ritz pairs for small eigenvalues are often inaccurate, we 
use the harmonic Ritz pairs, associated with 1A−  over same space. 

( )1 0H H H
m mm m m mA AV y AV y AV H y H H yθ θ− − ⊥ ⇔ − =  

After solving the generalized eigenvalue problem we have the 
harmonic Ritz pair ( )1 , mV yθ . New approximate eigenpairs 

computed after every cycle. 

16

GCROT

Optimality derives from orthogonality. Orthogonality cannot be enforced 
wrt to subspaces that have been discarded.  
 
So, after restart, linear solver often explores search spaces close to space 
over which we already have the optimal solution. 
 
Measure what angles new space (for correction of residual) has with 
discarded space and use this to decide what to keep to get angles between
discarded space and new space as close to orthogonal as possible. 
 
Make this precise and use as selection criterion for keeping vectors after 
restart. Combine with GCRO method: GCROT 
 
(GCR with inner Orthogonalization and Truncation) 
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Effect of Ignoring Orthogonality

( )range C

H Hb CC b QQ b= +

HCC b

( )range Q

( )range V

( )Hr I CC b= −

ϕ

( )He I VV r= −

18

Deriving Near-optimal Methods

H HV CC V QQ V CB QR= + = +  
 

(SVD)1 , , ,H H H H
i iZ BR X Y K Z Z y Q rν−= = Σ = =  

 

( )tan , , , ,ii i i
i

s
Q V

c
σ ϕ ϕ σ= = =  

 
( ) ( )1 1H He QK I K Q r CZ I K Q r− −= + − +  

 

( )
1
2

2 2 2

1
1

, .
p

p

i i i i i i i i ii
i

e Qy s Cx s c e sν ν ν
=

=

⎛ ⎞⎟⎜= − = ⎟⎜ ⎟⎜⎝ ⎠∑ ∑  



10

19

Deriving Near-optimal Methods

Let [ ]| cT T  unitary and ( ) ( )rank rank CcT T⎡ ⎤ =⎣ ⎦ , [ ]ˆ |V CT V=  and 

[ ]cC CT= . 
 

1
0 0H H H

c cZ BR T Z T X Y
− ⎡ ⎤ ⎡ ⎤= = = Σ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 
Select H

cT  so that singular values of  Z  minimal: 
 

2
1dim 2

min max
H

kS p k u S

u Z

u
σ += − ∈

=  and { }1 2span , , ,k k pS x x x+ += …  

 

( )
1
2

2 2 2

1
1

, .
p

p

i i i i i i i i ii k
i k

e Qy s Cx s c e sν ν ν
= +

= +

⎛ ⎞⎟⎜= − = ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑  

20

GCROT

Define  
 * *

m mY Q rν =  where mY  represents a change of basis 

 1 mϕ ϕ ϕ⎡ ⎤= ⎢ ⎥⎣ ⎦   principal angles ( )range mQ  and ( )range mV  

 1 2sin sin sin ms ϕ ϕ ϕ⎡ ⎤= ⎢ ⎥⎣ ⎦  

Then  

1
2

2 2

1

m

i i
i

e sν
=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∑  

 
Keeping k  dimensional subspace of ( )range C  can reduce this to  
 

  

1
2

2 2

1

m

i i
i k

e sν
= +

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑     (optimal) 
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this method as augmented GMRES . In [5] the authors also discuss other enhance-
ments. Baglama, Calvetti, Golub, and Reichel [1] derive a preconditioner from the
Arnoldi iteration(s) that moves small eigenvalues away from the origin.

The underlying idea for such strategies is that the worst-case bound on the con-
vergence is reduced by improving the spectrum. However, for nonnormal matrices,
typically strongly nonsymmetric matrices, these upper bounds may say very little
about the actual convergence. Besides, slow convergence is not necessarily caused by
small eigenvalues. When some eigenvalues are located equidistantly on a circle with
the origin at the center, GMRES will stagnate for a number of steps equal to the
number of eigenvalues on this circle [24], whether they are small or large. In addi-
tion, if the eigenvalues cluster around the origin, it may be impossible to even find
the smallest eigenvalues to sufficient accuracy. The same holds when the matrix is
nonnormal. Moreover, in the nonnormal case slow convergence may not be caused
by small eigenvalues at all. In a recent paper, Greenbaum, Pták, and Strakoš [14]
show that matrices can be constructed for which full GMRES gives arbitrarily poor
(nonincreasing) convergence, irrespective of the eigenvalues. So a favorable spectrum
does not help, and improving the spectrum may be useless. Some of these problems
are also mentioned in [19] and illustrated in the examples given there.

An additional problem of adding approximate eigenvectors to the Krylov subspace
after the Arnoldi iteration is that the Arnoldi iteration itself remains a restarted GM-
RES iteration. This can lead to stagnation problems like those reported for GMRESR
in [3, 4]. Appending vectors from the previous GMRES(m) cycle when restarted GM-
RES stagnates does not bring any improvement, because the residual is orthogonal to
these vectors. However, if from the start of the Arnoldi iteration we maintain orthog-
onality to a selected subspace, we generate a new space orthogonal to this selected
subspace. This often leads to much better convergence. Preventing stagnation prob-
lems was one of the main motivations for GCRO [7] as an improvement to GMRESR.
Also Blom and Verwer report stagnation problems with GMRESR that are remedied
by GCRO [3, 4] .

We think our method will be competitive for a wide range of problems. However,
especially for strongly nonsymmetric systems, we expect the method introduced here
to be better than the methods mentioned above. In the present paper we will outline
our approach and illustrate it for five test problems, three of which are taken from
[19], to compare with augmented GMRES.

In section 2 we derive the theory on which our truncation algorithm is based, in
section 3 we discuss the implementation, in section 4 we present our numerical results,
and in section 5 we give some conclusions and outline future work.

2. Neglecting orthogonality and optimal truncation. We will now derive
a set of equations for the residual error.

Consider the following case. We have already computed the optimal approxima-
tion to b in range(C), and the new residual is given by r = b − CCHb, where C is
a matrix with orthonormal columns. Now let F be a matrix with full column rank,
and let dim(range(C)⊕ range(F )) = dim(range(C)) + dim(range(F )). Then the QR-
decomposition QR = F − CCHF yields the best approximation to r in the space
range(C) ⊕ range(F ), QQHr. On the other hand, the QR-decomposition F = WS
yields the best approximation to r in the subspace range(F ), WWHr. The difference
between these two approximations is the residual error e. The residual error depends
on the principal angles [2], [13, pp. 584–585] between the subspaces range(C) and
range(F ), and one way to analyze the consequences of neglecting orthogonality is to

Eric de Sturler
Rectangle
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study these principal angles. However, we follow a slightly different, but equivalent,
strategy. Instead of looking at the principal angles we look at the (length of the)
residual error e. This approach is cheaper.1

Definition 2.1. Let the matrices C ∈ Cn×k, F ∈ Cn×m, and the vector r ∈ Cn
be given, such that

CHC = Ik,(2.1)

CHr = 0,(2.2)

rank(F ) = m,(2.3)

rank(F − CCHF ) = m.(2.4)

Furthermore, let

F = CB +QR,(2.5)

QHQ = Im,(2.6)

where B = CHF and R is upper-triangular. Using B and R we define

Z = BR−1 = (CHF )(QHF )−1,(2.7)

K = ZHZ,(2.8)

and we denote the singular value decomposition of Z by

Z = YZΣZV
H
Z .(2.9)

YZ = [y1 y2 . . . yk] and VZ = [v1 v2 . . . vm] are ordered so as to follow the convention
that

σ1 ≥ σ2 ≥ · · · ≥ σp,
where p = min(k,m). Also let

F = WS,(2.10)

WHW = Im,(2.11)

and S be upper-triangular. Finally, let

r1 = (I −QQH)r,(2.12)

r2 = (I −WWH)r,(2.13)

and let the residual error be e = r2 − r1.
In Definition 2.1, r1 is the residual corresponding to the best approximation to

r in the space range(C) ⊕ range(F ), whereas r2 is the residual corresponding to the
best approximation to r in the space range(F ) ignoring the orthogonality to range(C).
The residual error is the difference between r2 and r1. Note that CHQ = O and that
from (2.3)–(2.4) we know that R and S are nonsingular.

Theorem 2.2. The residual error e is given by

r2 − r1 =

p∑
i=1

(
νiσ

2
i

1 + σ2
i

Qvi − νiσi
1 + σ2

i

Cyi

)
,(2.14)

1In practice we often do not have F explicitly available, and in our approach we do not need to
orthogonalize F .
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where νi = vHi Q
Hr, and the norm of the residual error is given by

‖r2 − r1‖2 =

(
p∑
i=1

|νi|2σ2
i

1 + σ2
i

)1/2

.(2.15)

Proof. Equations (2.12)–(2.13) give

r2 − r1 = QQHr −WWHr.(2.16)

From (2.5) and (2.10) we can derive

W = CBS−1 +QRS−1,

which leads to

WWHr = CB(SHS)−1RHQHr +QR(SHS)−1RHQHr,(2.17)

using CHr = 0 from Definition 2.1. Again using (2.5)–(2.6) and (2.10)–(2.11), we see
that

(WS)H(WS) = (CB +QR)H(CB +QR) ⇔
SHS = BHB +RHR,

so that

R(SHS)−1RH = (R−H(SHS)R−1)−1

= (R−HBHBR−1 + I)−1

= (ZHZ + I)−1

= (K + I)−1.(2.18)

Note that all inverses above are well defined since R and S are nonsingular by defini-
tion. Substituting (2.18) into (2.17) gives

WWHr = CBR−1R(SHS)−1RHQHr +QR(SHS)−1RHQHr

= CZ(I +K)−1QHr +Q(I +K)−1QHr,(2.19)

and then substituting (2.19) into (2.16) gives

r2 − r1 = QQHr − CZ(I +K)−1QHr −Q(I +K)−1QHr

= QK(I +K)−1QHr − CZ(I +K)−1QHr.(2.20)

Using (2.9) we can rewrite (2.20) as

(2.21)

r2 − r1 = QVZ(ΣHZ ΣZ)(I + ΣHZ ΣZ)−1V HZ QHr − CYZΣZ(I + ΣHZ ΣZ)−1V HZ QHr.

From νi = vHi Q
Hr we have

V HZ QHr =
m∑
i=1

νiei,(2.22)
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where ei is the ith Cartesian basis vector. Finally, the substitution of (2.22) into
(2.21) gives

r2 − r1 =

p∑
i=1

(
νiσ

2
i

1 + σ2
i

Qvi − νiσi
1 + σ2

i

Cyi

)
,

and the norm of the residual error follows immediately from the orthogonality of C
and Q.

Theorem 2.2 indicates that for σi = 0, corresponding to a direction in range(F )
orthogonal to range(C), the associated component in the residual error is zero, and
for σi → ∞, corresponding to a direction in range(F ) that becomes dependent with
range(C), the associated component in the residual error equals the optimal correc-
tion. Thus, no correction is made in that direction.

We have derived equations for the residual error that show the consequences
of neglecting the orthogonality to range(C), that is, the consequences of discarding
range(C) by truncation or restart. In the next subsection we show how Theorem 2.2
can be used to obtain the (components of the) residual error in the case of discarding
an arbitrary subspace of range(C). This will then be used to select subspaces to
discard or to keep in order to maintain good convergence at low cost.

Optimal truncation. We will now use the results of the previous subsection to
determine which subspace of range(C) should be kept and what can be discarded. We
consider computing the residual r3 while maintaining orthogonality to the subspace
range(CT ) and neglecting orthogonality to the subspace range(CTc). By defining T
appropriately we can select arbitrary subspaces of range(C). Tc is the complement
of T (see below). In the following we use the notation [X|Y ] to indicate the matrix
that is formed by appending the columns of Y to the matrix X; we will use a similar
notation for appending rows to a matrix.

Definition 2.3. Let C, F , Q, and r be as in Definition 2.1, and let the matrix
[T |Tc] be a square, unitary matrix such that rank([T |Tc]) = rank(C), and T ∈ Ck×l.
Now let F̄ = [CT |F ], C̄ = CTc, and Q̄ = [CT |Q], and let

B̄ = C̄H F̄ = [0|THc B],(2.23)

R̄ = Q̄H F̄ =

[
I THB
0 R

]
.(2.24)

Using B̄ and R̄, we define

Z̄ = B̄R̄−1 = [0|THc Z](2.25)

(2.26)

and K̄ = Z̄H Z̄. We denote the singular value decomposition of Z̄ by

Z̄ = YZ̄ΣZ̄V
H
Z̄ ,(2.27)

where YZ̄ = [ȳ1 ȳ2 . . . ȳk−l] and VZ̄ = [v̄1 v̄2 . . . v̄m+l] are ordered such as to follow
the convention that

σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄min(k−l,m+l).

Furthermore, let

F̄ = W̄ S̄,(2.28)

W̄HW̄ = Im+l,(2.29)
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where S̄ is upper-triangular, and let

r3 = (I − W̄W̄H)r.(2.30)

Finally, let the residual error from discarding range(CTc) be given by ē = r3 − r1.
We say that the subspace range(CT ) is kept and that the subspace range(CTc) is

discarded. Note that F̄ = C̄B̄+ Q̄R̄ (cf. Definition 2.1). The residual r3 corresponds
to the best approximation to r in the space range(CT )⊕ range(F ). Following Theo-
rem 2.2 we can derive an equation for the residual error ē depending on T . From this
equation we can derive what the best choice for T is.

Theorem 2.4. The residual error ē is given by

r3 − r1 =

min(k−l,m+l)∑
i=1

(
ν̄iσ̄

2
i

1 + σ̄2
i

Q̄v̄i − ν̄iσ̄i
1 + σ̄2

i

C̄ȳi

)
,(2.31)

where ν̄i = v̄Hi Q̄
Hr, and its norm is given by

‖r3 − r1‖2 =

min(k−l,m+l)∑
i=1

|ν̄i|2σ̄2
i

1 + σ̄2
i

1/2

.(2.32)

Proof. The proof follows immediately from Theorem 2.2.
Analogous to (2.15) the norm of the residual error is determined by the singular

values of Z̄ and by the values ν̄i. The smaller the singular values are, the smaller the
residual error will be. If we can bound the singular values from above by some small
value, then the error cannot be large. Likewise, if we want to maintain orthogonality
to a subspace of dimension l, then we should truncate such that the l largest singular
values from Z are removed in Z̄. For the moment we ignore the fact that the coefficient
ν̄i may be very small, in which case the size of σ̄i does not matter.

So, we want to choose Tc (and hence T ) such that the maximum singular value of
Z̄ is minimized. How to achieve this is indicated by the following min-max theorem,
which is an obvious variant of Theorems 3.1.2 and 3.3.15 in [15, p. 148 and pp. 177–
178].

Theorem 2.5. Let Z and its singular value decomposition be as in Definition 2.1,
and let Tc be as in Definition 2.3. Then

min
S ⊂ Ck

dim(S) = k − l

max
x ∈ S
‖x‖2 = 1

‖xHZ‖2 =

 σl+1 if l + 1 ≤ p

0 if l + 1 > p,
(2.33)

and the minimum is found for

S = span{yl+1, yl+2, . . . , yk}.(2.34)

This is equivalent to

min
Tc ∈ Ck×(k−l)

THc Tc = Ik−l

max
ξ ∈ Ck−l
‖ξ‖2 = 1

‖(Tcξ)HZ‖2 =

 σl+1 if l + 1 ≤ p

0 if l + 1 > p,
(2.35)
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and the minimum is found for Tc, such that

range(Tc) = S = span{yl+1, yl+2, . . . , yk},(2.36)

x = Tcξ.(2.37)

Proof. The proof is a variant of the proofs of Theorems 3.1.2 and 3.3.15 in [15, p.
148 and pp. 177–178].

Since Z̄ = [0|THc Z] and ‖(Tcξ)HZ‖2 = ‖ξH(THc Z)‖2 = ‖ξH Z̄‖2, it is clear that
the choice for Tc in (2.36) minimizes the maximum singular value of Z̄.

Now from Theorem 2.5 the most obvious choices for the optimal truncation T
and its complement Tc are

T = [y1 y2 . . . yl],(2.38)

Tc = [yl+1 yl+2 . . . yk].(2.39)

For this particular choice of T and Tc, we can derive the singular value decomposition
of Z̄ immediately from the singular value decomposition of Z. From (2.25) and the
singular value decomposition of Z (Definition 2.1) we get Z̄ = YZ̄ΣZ̄V

H
Z̄

, where

YZ̄ = [e1 e2 . . . ep−l|?],(2.40)

ΣZ̄ = diag(σl+1, σl+2, . . . , σp, 0, . . . , 0)(k-l) × (m+l),(2.41)

VZ̄ =

[
0 vl+1 vl+2 . . . vp ?
? 0 0

]
(2.42)

(see [8]). Here the ? symbols denote any submatrices that satisfy the respective
conditions that YZ̄ and VZ̄ be unitary matrices.

We can now give the following theorem about the residual error ē = r3 − r1 and
its norm.

Theorem 2.6. The residual error ē = r3 − r1 that results from the truncation
defined by the matrix T from (2.38) is given by

r3 − r1 =

p∑
i=l+1

(
νiσ

2
i

1 + σ2
i

Qvi − νiσi
1 + σ2

i

Cyi

)
,(2.43)

and its norm is given by

‖r3 − r1‖2 =

(
p∑

i=l+1

|νi|2σ2
i

1 + σ2
i

)1/2

.(2.44)

Proof. The proof follows from Theorems 2.2 and 2.4, using Q̄, VZ̄ , ΣZ̄ , C̄, and
YZ̄ from Definition 2.3, and (2.40)–(2.42). We also use the possibility to take YZ̄ = I;
see (2.40). For details we refer to [8].

The effect of restarting GMRES and selecting the subspace to keep.
We will now analyze the residual error that results from restarting GMRES, and select
the subspace to keep after m iterations of GMRES. The implementation will be given
in the next section.

Given some iteration s < m, our analysis gives the following information. First,
how much worse the convergence would have been after m iterations, if we had
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restarted after s iterations, that is, discarded range(AWs). Second, which subspace
from the first s iterations we should have kept, in order to have in the remaining
(m − s)-iterations convergence as close as possible to that of the full m GMRES
iterations.

After m iterations of GMRES, starting with w1 = r0/‖r0‖, we have from (1.12)
AWm = Wm+1H̄m, and (1.15) gives the orthonormal basis for range(AWm):

Wm+1Q̄m = Wm+1[q1 q2 · · · qm].(2.45)

Furthermore, we have AWs = Ws+1H̄s, and the residual rs is given by (1.16):

rs = r0 −Ws+1Q̄sQ̄
H
s W

H
s+1r0

= Ws+1(I − Q̄sQ̄Hs )‖r0‖2e1

= Ws+1q̃s+1q̃
H
s+1‖r0‖2e1.

2(2.46)

We define ρs = (q̃Hs+1e1)‖r0‖2 q̃s+1. Then rs = Ws+1ρs, which we can also write as
rs = Wm+1ρs with some abuse of notation.3

Now, consider a restart of GMRES with rs as initial residual and making m− s
iterations. Clearly, range(AWm) = range(AWs)⊕AKm−s(A, rs). Using (2.45)–(2.46)
and following the notation of Definition 2.1, we take

C = Ws+1Q̄s = Wm+1[q1 · · · qs],(2.47)

Q = Wm+1[qs+1 . . . qm].(2.48)

For F we can take any basis of AKm−s(A, rs), because any matrix whose columns
form a basis for range(F ) gives the same matrix Z. Let F = MS, with S invertible;
then we have

Z = (CHF ) (QHF )−1 = (CHM)S S−1(QHM)−1 = (CHM) (QHM)−1.

So F can be represented implicitly by

F = Wm+1[(H̄s+1ρs) (H̄s+2H̄s+1ρs) . . . (H̄m · · · H̄s+2H̄s+1ρs)].

In practice we generate F by an Arnoldi iteration with H̄m and ρs. Now, following
Definition 2.1, we compute B = CHF and R = QHF . The optimal residual after m
GMRES iterations is given by r1 in Definition 2.1. The residual after making first s
GMRES iterations, restarting, and then making another m− s GMRES iterations is
given by r2 in Definition 2.1. The difference between the two residuals, the residual
error e, is given by Theorem 2.2, where r = rs, and Z = BR−1, with B and R
computed as above. The singular value decomposition of Z not only describes the
loss of convergence because of restarting (discarding C), according to Theorem 2.2,
but it also indicates which vectors from the first s iterations we should have kept for
good convergence in the remaining m − s iterations, according to Theorems 2.5 and
2.6. Of course, we can choose any s < m, and we can do the analysis for several values
of s if we want.

2q̃s+1 is the last column of the matrix generated by the first s Givens rotations; q̃s+1 6= qs+1

since q̃s+1 will be changed by the next Givens rotation.
3We will assume every vector suitably adjusted by adding zeros at the end. Likewise, we will

assume every matrix suitably adjusted by adding zero rows at the bottom.
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GCROT: Selective orthogonality

1. gcrot(30,20)
2. gcrot(20,13)

gmres(50)

gmres(150)
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Convection-diffusion problem with strong convection

Compare restarted GMRES with GCROT, which maintains orthogonality 
against sequence of selected subspaces. Time-wise GCROT has additional 
advantage of working with a smaller subspaces (cheaper iterations).

22

Comparison GMRES-DR vs GCROT
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strong convection; 

strongly nonsymmetric
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Sequence of Linear systems

For many problems we solve a long sequence of linear systems
Many small timesteps/loading steps for problems with strong transient 
behavior, crack propagation, fatigue

Very large optimization problems with Broyden-type methods, Newton 
methods in optimization and nonlinear systems, etc.

PDE constrained optimization, each iteration requires the solution of one 
to many  linear systems

If the matrix does not change much (or in special way) we can 
recycle ‘selected Krylov subspaces’ for the next system

Not possible for GMRES-DR as it requires a Krylov space, and 
this no longer holds if matrix changes: modification GCRO-DR

Often updating the image of the Krylov subspace very cheap

24

Solving Sequences of Linear Systems

Computational problems often involve a sequence of systems 
with small or localized changes in space or structure

Evolutionary problems, nonlinear problems and 
optimization, parameter estimation, Monte Carlo and 
Markov Chain Monte Carlo methods

Adaptive discretizations and representations

Accurate simulation requires solution of hundreds to 
thousands of large, sparse, linear systems

Crack propagation, topology optimization, tomography, 
uncertainty quantification

Fast solution by exploiting the slowly changing nature of 
problem or special structural changes

Recycle (adapt & reuse) search spaces from previous problems

Recycle preconditioners (especially AMR)
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Recycling Subspaces for Krylov Methods

Iterative (Krylov) methods build search space and compute 
solution by projection

Building search space often dominates cost

Initial convergence often poor, reasonable size search space 
needed, then superlinear convergence

Get fast convergence rate and good initial guess immediately 
by recycling selected search spaces from previous systems

What is right subspace to recycle? How to recycle space?

For quasi-Newton methods alternative possibility

Project Jacobian update onto Krylov space, no iterations 
needed, solve with updated Hessenberg matrix

Klie&Wheeler

Combination of recycling strategies (Klie&dS)

26

How to Select the Right Space to Recycle?

Typically, a subspace exists such that Krylov space from 
almost any starting vector has large components in that space 
(reason why restarting is bad, conv. Lanczos/Arnoldi) 

Optimality derives from orthogonal projection: new search 
directions should be far from this recurring subspace (after 
resolving it) for fast convergence

If such a recurring subspace persists (approx) from one system 
to the next, it can be recycled

Typically true when changes to problem are small and/or 
highly localized 

Currently, we use two methods that differ in how they capture 
the recurring subspace

Also useful to recycle solutions depending on problem

Fischer'96 (initial guess), K&dS'06
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How to Select the Right Space to Recycle?

Compute canonical angles between successive spaces –
measure recurring subspace 

GCROT (dS'99), with recycling (P&dS'06)
Recycle recurring subspace 

in current and subseq. systems – non-Hermitian systems
subsequent systems – Hermitian systems

Invariant subspace from small eigenvalues (or large, or both)
GMRESDR (Morgan'04, '95), with recycling: GCRODR 
(P&dS'06), RMINRES (WdS&P'07)

Subspace from previous solutions
for initial guess (Fischer'96),
for recycling/combined with invariant subspace (K&dS'06)

Keep previous space & constrain Jacobian update in quasi-
Newton methods

Klie&Wheeler'05
Combined with recycling (Klie&dS in prep)

28

Example: Crack Propagation
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Results for Crack Propagation

30

Fast Solution of Sequences: Issues

How do relevant subspaces change under changes in the matrix?  (invariant 
subspaces, solution subspaces, …)
Analysis of convergence of recycle method when keeping approximate 
(invariant) subspace
Use application details to tune the recycling (subspace)
Type of matrix update, problem and algorithm dependent

timesteps, rank-k update in quasi-Newton method, localized nonlinear 
behavior (crack propagation), line search

Nature of PDE and changes in parameters
Varying behavior over time: certain modes stationary while others still 
change (does the method learn?)
Perturbation of (e.g.) invariant subspaces under specific changes in the 
matrix
Multiple parameterized matrices and right hand sides
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Example: Tomography

Reconstruct medium by measuring how signals propagate

Parameterize medium and optimize parameters by matching measured signal 
with computed signal (at receivers)

Forward problem 

Have to solve (forward) problem many times (optimization)

Problem is Hermitian for zero frequency and nonzero frequency gives 
imaginary shift

Multiple sources give multiple right hand sides

Nonlinear least squares/Gauss-Newton with line search

First few steps fix background parameters, later steps mainly change shape of 
tumor: ‘diffusion’ jump in small region

Change in matrix concentrated in high frequency modes

Lot of opportunity to exploit structure

( )( ) ( ), ; , ;j ja x p u m x p u fω ω−∇ ∇ + =i

32

Perturbation of Invariant Subspace

Consider 1 2
1

01 0 1
,
0 10 1

A x x
ε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜= → = =⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟+ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

Consider perturbation E  with 1 2E ε ε= + , 2ε  arb. small. 
Enough to give A any eigenvectors (different from 1x  and 2x ). 
Let 1 2E E E= +  and 1 2

ˆ ˆ ˆX x x⎡ ⎤= ⎢ ⎥⎣ ⎦  (unitary) 

Let 1
1

0 0

0
E

ε

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ − ⎟⎟⎜⎝ ⎠
 and *

2
2

0 0
ˆ ˆ
0

E X X
ε

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
. 

1A E I+ =  (all nonzero vectors are eigenvectors) 

* *

2 2

0 0 1 0
ˆ ˆ ˆ ˆ
0 0 1

A E I X X X X
ε ε

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟ ⎜+ = + =⎜ ⎟⎟ ⎜⎜ ⎟⎟ +⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
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Perturbation of Invariant Subspace

( )1 2 3 1 2 3 1 2 3diag , ,
H

A V V V V V V⎡ ⎤ ⎡ ⎤= Λ Λ Λ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , ???A E+ =  

 
Perturbation E  of A is small, but too large to simply assume that 
invariant subspace for small eigenvalues, ( )1Range V , survives. 
 
However, E  concentrated in high frequency modes 
 

 ( ) ( )2 1
1 1kλ λ−  small but ( ) ( )( )2 1

1 2 1 1 1k
F

E V V ε γ λ λ⎡ ⎤ = < −⎢ ⎥⎣ ⎦  

 
 FE  not small, but 3 FF

EV E≈  and ( ) ( )( )
1

3 1
3 2 1 kF

EV γ λ λ< −  

 

 Then ( ) ( )( ) ( )
1 1 1tan Range ,RangeV V Oϑ ε=  (small) 
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Convergence 

Consider Ax b= , solved by GCRO-DR. 
 
Let lQ  be invariant subspace of dimension l . Let kC  approximate 

invariant subspace lQ  (where k l≥ ), and ( )
2
1C QIδ = −Π Π < . 

Let ( )1 Cr I b= −Π  and jV  represent new search space. 
 
Relate convergence of GCRO-DR to deflated problem, where all 
components in lQ  have been removed from residual/rhs. 
 
Hermitian: 

( )
( ) ( )

1 2
1 1 2 12 22

min min
1j k Q j

Q Vd V C d I P V
b d I P r d I r

δ
δ∈ + ∈ −

− ≤ − − + −Π
−

 

 
non-Hermitian: 

( )
( )

1 2

2

1 12 222
min min

1j k Q j
Q Vd V C d I P V

b d P I r
δ

δ∈ + ∈ −
− ≤ + −Π

−
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Changes from Updates to Parameters

Structure of GN steps and 
subsequent line searches give 
opportunities of recycling

Not easy to ‘guess’ which previous 
step was closest

Mix of old solutions and selection 
of subspaces from previous steps

Selection of subspaces also  based 
on specific right hand side

36

Iteration Counts

Compare convergence of subsequent linear systems using recycling versus 
using latest solution of previous line search
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Iteration Counts
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Conclusions and Future Work

Recycling Krylov spaces can greatly reduce iteration counts for 
sequence of problems
Significant opportunity to tune recyling for specific algorithms and 
applications (with benefits)
Further convergence analysis (GCROT)
Refined perturbation analysis
Applications: Tomography (with Misha Kilmer), QCD, electronic 
structure, topology optimization (Paulino), PDE constrained 
optimization
Nonlinear and optimization algorithms: quasi-Newton methods 
(updated ‘Hessian’ or ‘Jacobian’)
Probably interesting links with limited memory matrix methods 
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Example: Topology Optimization

Initial guess

Finite Element Analysis

Filtering Techniques

Optimization Process
(Optimality Criteria)

Sensitivity Analysis

Update Design Variables

|ρi
new – ρi

old| < tolerance

Plot Optimal Topology

False
True

Iteration 0

Iteration 4

Iteration 16

Iteration 106
(Final iteration)

Initial guess

Finite Element Analysis

Filtering Techniques

Optimization Process
(Optimality Criteria)

Sensitivity Analysis

Update Design Variables

|ρi
new – ρi

old| < tolerance

Plot Optimal Topology

False
True

Iteration 0

Iteration 4

Iteration 16

Iteration 106
(Final iteration)

Optimize material distribution, ρ, in design domain

Minimize compliance uTK(ρ)u, where K(ρ)u=f

40

Example: Topology Optimization
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Example: Topology Optimization

42

How to Use a Recycle Space?

Solve Ax b=  using recycled subspace/matrix U  (for new A): 
 
Compute AU C= , CR C=  (QR), 1U UR−=  (implicit) 
Now AU C=  and  *C C I=  
 
Set ( )*0r I CC b= − , *

0x UC b= , and 1 0 0/v r r=  

Augmented Arnoldi: *
1 1m m m m m mAV CC AV V H CB V H+ += + = +  

 
Minimize ( )0 0 1m m mb A x Uz V y r Cz CBy V H y+− + + = − − − =  

 
 ( ) ( )1 1 0m mV e r H y C z By+ − − +  

 
Solve 1 0mH y e r≈  and set z By= −  

0m mx x Uz V y= + +   and  ( )1 1 0m m mr V e r H y+= −  (GCRO, dS’95) 
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Recycling for Hermitian systems

No need to recycle for single system (theory)
Recycle with fixed space for given system
Update recycle space for next system

Use short recurrence and discard unnecessary vectors
Complications; how to efficiently update recycle space

Improve using Lanczos vectors periodically (discard)
Multiple possible combinations (3 spaces)
Using only Lanczos vectors not a good idea as they may be 
nearly orthogonal to good eigenvectors in recycle space
We update/merge 'new' recycle space with Lanczos vectors
Other options should be evaluated

Efficient implementation of invariant subspace computation

44

Updating the Recycle Subspace

Each m  its:  ( ) ( )**
j j jI CCI CC A V VT− =−  

Update: 0U U=  (recycle space) and 1j j jU V U−
⎡ ⎤ →⎢ ⎥⎣ ⎦  

 

1 1

0
0

0

j

j j j j

j

B
A U V C C V I AW WH

T
− −

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎢ ⎥= → =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Exploit orthog. relations to compute (harm) Ritz vectors efficiently 
 
 Solve * * * *H W WHP H W WPΘ=  
 

Let 1j j jU U V P−
⎡ ⎤= ⎢ ⎥⎣ ⎦ ; then jAU WHP=  

 

Let 
QR ˆW WK=  and 

QR
KHP QR= , and set ˆ

jC WQ=  and 1
j jU U R−=  
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Short Term Recurrences for RMINRES

Full iteration  ( ) ( )**
1m m mI IC CC V TCA V +− =−  

Let m m mT G F=  and 1 *
1 0m m my F G e r−=   

Then *
m m m mx UC b UBy V y= − +  and *

0 0 1m m m mr r CC r V T y+= − −  
 
Let 1

mB UBF −= , 1
m m mV V F −= , and ( )

* *
1 0 1m m m m m my F y G e r G y −= = =  

 
Then 
 2 2, 1 1, ,m m m m m m m m m mv f v f v f v− − − −+ + =  
 
 *

2 2, 1 1, ,m m m m m m m m m mb f b f b f UC Av− − − −+ + =  
 
 *

0 0 1 , ,m m m m m m m m m m m mx x UC r B y V y x b y v y−= + − + = − +  
 
And we can drop all vectors from recurrence except the last two 

46

Topology Opt. Convergence results

Results: 84x28x14 mesh (107K dofs) and 
180x60x30 (1M dofs) (on PC)

Currently more complicated models 
up to 2M dof (on PC)

,
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Conclusions and Future Work

Many options in recycling search spaces and preconditioners

Recycling search spaces is very effective

Recycling even effective for (cheap) three-term recurrences

Techniques for recycling are fairly cheap 

Options for quasi-Newton methods (other cases special structure)

Effective in reducing both Jacobian evaluations and linear solves

Best recycle space is open question; nontrivial issues even in the 
symmetric case. Lot of interesting work to do.

Accurate recycle space not needed for fast convergence but typically 
need regular updating to track changes in problem (Parks afternoon)

Tuning recycling for particular applications and/or nonlinear iteration 
yields further improvement (tomography)

Software available soon (Matlab, Trilinos, Sandia, and MCC software 
archive at UIUC, some in PETSc)

48

Good Reading

Mike Parks, The Iterative Solution of a Sequence of Linear Systems arising from 
Nonlinear Finite Element Analysis, PhD thesis 2005, CS UIUC,  available from 
http://www.cse.uiuc.edu/~parks/
Parks, de Sturler, Mackey, Johnson, and Maiti, Recycling Krylov Subspaces for 
Sequences of Linear Systems, SIAM Journal on Scientific Computing 28(5), 
1651-1674,2006
Kilmer and de Sturler, Recycling Subspace Information for Diffuse Optical 
Tomography, SIAM Journal on Scientific Computing 27(6), pp. 2140-2166, 2006
Wang, de Sturler, and Paulino, Large-Scale Topology Optimization using 
Preconditioned Krylov Subspace Methods with Recycling, International J. for 
Numer. Methods in Eng. 69(12), 2441-2468, 2007
All available at http://www.math.vt.edu/people/sturler/index.html
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