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Consider case where one eigenvalue  much larger than others.�n

Construct better polynomial than  using thisTm

2�−�n−�1

�n−�1
/Tm

−�n−�1

�n−�1

information.

For example, “polynomial that is zero at extreme eigenvalue and lower
degree Chebyshev over other eigenvalues”.

pm(z) = Tm−1

2�−�n−1−�1

�n−1−�1
/Tm−1

−�n−1−�1

�n−1−�1

�n−�

�n

Clearly  and , pm(�n) = 0 |pm(� i)| < |Tm−1

2�i−�n−1−�1

�n−1−�1
/Tm−1

−�n−1−�1

�n−1−�1
| i < n

So, new bound , where ,
æemæA

æe0æA

[ 2
�n−1 −1

�n−1 +1

m−1

�n−1 =
�n−1

�1

versus old bound: , where .
æemæA

æe0æA

[ 2
�n −1

�n +1

m

�n =
�n

�1

Convergence bounds for CGConvergence bounds for CG

©2002 Eric de Sturler

Convergence bounds for CG and MINRESConvergence bounds for CG and MINRES

Clearly, the trick can be applied if we have multiple outlying eigenvalues
(large ones and small ones).

The same convergence bounds obtained for the error in CG can be

obtained for the residual in MINRES if  is HPD, since we bound theA

same polynomial.

MINRES: , where .
ærkæ2

ær0æ2

[ 2
�n −1

�n +1

k

�n =
�n

�1

However, if  is Hermitian but not definite (MINRES) we need to find aA

(Tschebyshev) polynomial that is small on both sides of the origin. This
is much harder, which has a significant effect on the convergence
(bound).

03/06/03 9-10 Krylov06.prz



©2002 Eric de Sturler

Let  be Hermitian and let , where  and A �(A) _ [a,b] 4 [c,d] a < b < 0 < c < d
.b − a = d − c

We need a polynomial that is small over both these intervals.
We proceed more or less the same way as for CG: we construct a polynomial
 that maps both intervals into  and define the Chebyshev polynomialq [−1, 1]

in terms of .q

We take  (2nd degree polynomial)q(z) = 1 +
2(z−b)(z−c)

ad−bc

Check that  maps  into  (draw ).q(z) [a,b] 4 [c,d] [−1, 1] q
How would you compute  for more general ?q(z) [a,b] 4 [c,d]

Now we take , where  (integral part).pk(z) = Tl(q(z))/Tl(q(0)) l = [k/2]

Note that we have Chebyshev polynomials of half the degree we had in the
definite case. 

Convergence bounds for MINRES  (1)Convergence bounds for MINRES  (1)
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Convergence bounds for MINRES (2)Convergence bounds for MINRES (2)

To compute  we need to compute .max pk(z) T l(q(0))

We have .q(0) = 1 +
2bc
ad−bc

=
ad+bc

ad−bc

Set  then .� =
ad+bc

ad−bc
= 1

2
(y + y−1) T l

(�) =
1
2
(y l + y−l )

Solve � =
1
2
(y + y−1) g

1
2y

2 − �y +
1
2 = 0 (y ! 0)

 (solution are each other’s inverse, so same result)y = � ! �
2 − 1

y =
ad+bc

ad−bc
+

(ad+bc)2

(ad−bc)
2 −

(ad−bc)2

(ad−bc)
2 =

ad+bc

ad−bc
+

4adbc

(ad−bc)
2 =

ad+bc

ad−bc
+

2 adbc

ad−bc
g

y =
( ad + bc )

2

( ad + bc )( ad− bc )
=

( ad + bc )

( ad − bc )

Bound: .
ærkæ2

ær0æ2
[

ad − bc

ad + bc

[k/2]
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Let  be Hermitian and let , where A �(A) _ [a,b] 4 [c,d]

 and .a < b < 0 < c < d b − a = d − c

Bound for MINRES:
ærkæ2

ær0æ2

[ 2
ad − bc

ad + bc

[k/2]

In the case that  and  (symmetric w.r.t. the origin), we a = −d b = −c

can simplify bound further (but bound does not get better):

(note 
ærkæ2

ær0æ2

[ 2
d−c

d+c

[k/2]

= 2
d/c−1
d/c+1

[k/2]

� =
d
c )

In HPD case: . 
ærkæ2

ær0æ2

[ 2
� −1

� +1

k

So bound in indefinite case at iteration  is that of the definite casek

at iteration  for matrix with condition number .k/2 d
2/c2

Dramatic loss of convergence compared with definite case.

Convergence bounds for MINRES (3)Convergence bounds for MINRES (3)
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If we know that  has only a few negative (positive) eigenvalues, weA

again can improve the bound significantly by taking product 

, where  on negative eigenvalues and  is scaledps(z)Tk−s(z) p s = 0 Tk−s

and shifted Chebyshev polynomial over positive eigenvalues.

Product must also satisfy our normalization: .ps(0)Tk−s(0) = 1

Let .�1 < �2 < �3 < 0 < �4 <£ < �n

Possibility: p̃k(z) = (z − �1)(z − �2)(z − �3)Tk−3
2z−�n−�4
�n−�4

Normalize: pk(z) = p̃k(z)/p̃k(0)

pk(z) =
(z−�1 )(z−�2 )(z−�3)

−�1�2�3
Tk−3

2z−�n−�4
�n−�4

/Tk−3
−�n−�4

�n−�4

, where  and .pk(z) [ 2C3

�4 −1

�4 +1

k−3

C3 =
(�n−�1 )(�n−�2 )(�n−�3)

−�1�2�3
�4 =

�n

�4

Note that  may not be good for small .pk(z) k

Convergence bounds for MINRES (4)Convergence bounds for MINRES (4)
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Convergence bounds for GMRES (1)Convergence bounds for GMRES (1)

We will now consider convergence bounds for non-Hermitian problems
solved by GMRES. This brings some important changes.

First,  may not be diagonalizable, and we have to take polynomials overA
Jordan blocks into account. Second, the eigenvectors (and proper

vectors) of  may not be orthogonal. Third, the eigenvalues may beA
complex.

Let’s assume  is diagonalizable: A A = V�V−1

We still have 
ærkæ2 [ min

pk
æVpk(�)V

−1r0æ2 [ �(V)min
pk

æpk(�)æ2
ær0æ2 e

ærkæ2/ær0æ2 [ �(V)min
pk

max
i

pk(�i )

Clearly, usefulness of bounding  depends on .min
pk

max
i

pk(� i) �(V)

Sharp for normal , approach still useful if  almost normal (  unitary).A A V

©2002 Eric de Sturler

Now we must find polynomials that are small over a region in

the complex plane. More complicated than Hermitian case.

Generally we try to find ‘simple’ regions containing the

eigenvalues, and devise polynomial over such a region (e.g.

circle or ellipse).

Eigenvalues in circle  not containing the origin with centerC(c, �)

 and radius :c �

minpk(0)=1 maxz�C(c,�) pk(z) =
�

c

k

Obtained for polynomial 

pk(z) = ( z−c
0−c

)k = (1 − z/c)
kc

ρ

Convergence bounds for GMRES (2)Convergence bounds for GMRES (2)
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We will use  minimax polynomials in the complex plane to derive bounds
over ellipses (more general regions possible).

Consider the  and .Tm(z) = cosh(m cosh−1z) z = cosh�
Let ; then  where .w = e� Tm(z) =

1
2
(wm

+w−m) z =
1
2
(w +w−1)

Consider the map  and the image of the circle .J(w) = 1
2
(w + w−1) w = �ei�

z =
1
2
(�ei� + �−1e−i� ) = 1

2
(� + �−1 ) cos� + 1

2
(� − �−1) sin�

Image is ellipse with semi-axes  and  and foci .1
2
(�+ �−1 ) 1

2
(� − �−1 ) −1, 1

Inverse map is not unique and so we restrict ourselves to .� m 1

Let  be the ellipse given above by the Joukowski map .E� J(w)

Now consider the following problem min
qc�m,q(�)=1

max
zcE�

q(z)

We use  for .min
p̂c�m,p̂(�)=1

max
wcC(0,�)

p̂(w) =
�m

� m p̂(w) =
p(w)

p(�)
=

wm

�m

The basic idea is to transform the ellipse to the circle, apply  andp(.)

transform back, and finally normalize.

Convergence bounds for GMRESConvergence bounds for GMRES
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Consider  for and .J ) p ) J−1(z) z =
1

2
(w +w−1) w = �ei�

 
Then J ) p ) J−1(z) = J(�meim�) = 1

2
(�meim�

+ �
−me−im� ) h Tm(z)

Normalization requires . So we take .Tm(�) = 1 T̂m(z) = Tm(z)/Tm(�)

Let  (taking max modulus)J−1(�) = w� = � ! �
2
− 1

 (large )
Tm(z)

Tm(�)
=

�me im�
+�−me−im�

w�
m
+w�

−m =

�meim�
+�−me−im�

w�
m
eim��

+ w�
−m

e−im��
j

�m

w�
m m

This gives an upper bound for the minimax polynomial.

It turns out, for large ,  approximates the optimal polynomial.m T̂m(z)

Now we can use this for more arbitrary elliptic regions that contain the
eigenvalues by scaling, rotating, and translating . Notice that a tighterE�

fit around the eigenvalues gives tighter bounds.

Convergence bounds for GMRESConvergence bounds for GMRES
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Consider the eigenvalues contained in the ellipse with center ,E(c,d, a) c

focal distance , and major semi-axis  (aligned with -axis). We want thed a x

polynomial normalized such that  (residual polynomial).T̂m(0) = 1

We first translate the polynomial over  and then scale by  to have−c d

focal distance . This gives the ellipse  and the translated and1 E(0, 1,a/d)

scaled origin gives .� = −c/d

So we get  with .E� = E(0,1,a/d) a

d
=

1
2
(� + �−1 ) e � = a/d + (a/d)

2
− 1

This gives .z c E� : z =
1
2
(�e i� + �−1e−i�) = J(�ei� )

Tm(z) =
1
2 �

m
e
im�

+ �
−m
e
−im�

[ Tm(a/d)

Tm(�) =
1
2 w�

m
+w�

−m
= Tm(c/d)

So finally, we get T̂m(z) =
Tm

(z)

Tm
(c/d) [

Tm
(a/d)

Tm
(c/d)

Convergence bounds for GMRESConvergence bounds for GMRES
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Eigenvalues in ellipse not containing the origin with center ,E(c,d, a) c

major semi-axis , and focal distance .a d

,where .ærmæ2/ær0æ2 [ �(V)
Tm

(a/d)

Tm
(c/d) Tm(z) = coshmcosh−1

z

Tm
(a/d)

Tm
(c/d)

=

a/d+ (a/d)2−1
m

+ a/d+ (a/d)2−1
−m

c/d+ (c/d)2−1
m

+ c/d+ (c/d)2−1
−m l

a+ a2−d2
m

c+ c2−d2
m

c

c+dc-d

c+ac-a

Convergence bounds for GMRESConvergence bounds for GMRES
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Convergence bounds for GMRESConvergence bounds for GMRES
Although the eigenvalues often give important information about

the convergence of GMRES, we have the following theorem that

states this is not generally the case.

Theorem:

Given any set of eigenvalues and any non-increasing convergence

curve, a matrix with those eigenvalues and a right hand side can be

constructed for which GMRES will display the prescribed

convergence curve.

So even with a ‘nice’ spectrum the convergence can be arbitrarily

poor. 

This does not have to the case. Nonnormal matrices are not

inherently bad.

©2002 Eric de Sturler

Consider matrix 

A =

0 1
0 1
• •

1
c0 c1 c2 £ cn−1

Eigenvalues are zeros of .p(�) = �n
− cn−1�n−1

− cn−2�n−2 −£ − c0 = 0

Solving  gives no convergence till last step.Ax = e1

Taking appropriate initial residual yields any convergence curve.

This matrix is rather special, but we get same behavior for any unitarily
similar matrix. Note that this matrix is reordered lower triangular matrix,
and any matrix is unitarily similar to some lower triangular matrix (Schur
decomposition).

Convergence bounds for GMRESConvergence bounds for GMRES
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1: A=diag(1,2,3,...,100)

2: A=diag(-1,-100,1,2,...,49,52,53,...,100)

3: A=diag(-99,-97,...,-1,1,3,...,99)
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Convergence of Indefinite ProblemsConvergence of Indefinite Problems
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u=un

u=us

u=uw u=ueLu=f

Lu = −(pux )x − (quy )y + rux + suy + tu = f

A Model ProblemA Model Problem

Convection-Diffusion(-Reaction) Equation

Dirichlet boundary conditions

©2002 Eric de Sturler

p=q=1; r=s=70; h=1/31;

us=0; uw=0; un=1; ue=1;
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GMRES(m) with r=s=70GMRES(m) with r=s=70
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GMRES(m) after shifting spectrum GMRES(m) after shifting spectrum 
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