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Fixed-Point Iterations,
Krylov Spaces, and Krylov Methods
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Fixed-Point Iterations

Solve nonsingular linear system: Ax b=    (solution 1x̂ A b−= ) 
Solve an approximate, but simpler system: 1

0 0
Mx b x M b−= → =  

 
Improve the solution using the residual: 

0 0
r b Ax= −   (iterative refinement) 

Error, 
0 0
ˆe x x= − , satisfies 

0 0 0
Ae b Ax r= − =  

Don’t compute exact error, instead solve 
0 0

Mz r=  and set 
1 0 0
x x z= +  

 
Iterate:  
 

k k
r b Ax= −   ( )1 1 1 1k k k k

b A x z r Az− − − −= − + = −  

 1
k k
z M r−=    (solve 

k k
Mz r= ) 

 
1k k k

x x z+ = +  
 
Methods: Jacobi iteration (diagonal), Gauss-Seidel (upper triangular), many 
others such as (S)SOR, ... 
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Fixed-Point Iterations

Convergence of such iterations? 
Let A M N= −  (matrix splitting).  
Then 

1k k k k k k k
Mz b Ax Mz b Mx Nx Mx Nx b+= − ⇔ = − + ⇔ = +  

 (fixed-point iteration 1 1
1k k

x M Nx M b− −
+ = + ) 

 
Note that the fixed-point is the solution (proof?)  
 
Error: 

 ( )
( )

1 1 1 1
1

1 1
1 1

1
0

ˆ ˆ

ˆ
k k k

k k
k

e x x M Nx M b M Nx M b

M N x x M Ne

M N e

− − − −
−

− −
− −

−

= − = + − −

= − =

=

 

 

Residual: ( )1 0

k

k
r NM r−=  and ( ) ( )1 1 1

0

k

k
M r M N M r− − −=  (proof?) 

To analyze convergence we need to introduce/review a number of concepts 

4

Rate of Convergence

Let x̂  be the solution of Ax b= , and we have iterates 
0 1 2
, , ,x x x … 

 
{ }
k
x  converges (q-)linearly to x̂  if there are 0N ≥  and [0,1)c ∈  such that for 
k N≥ : 

1
ˆ ˆ

k k
x x c x x+ − ≤ −‖ ‖ ‖ ‖, 

 
{ }
k
x  converges (q-)superlinearly to x̂  if there are 0N ≥  and a sequence { }

k
c  

that converges to 0 such that for k N≥ : 
1
ˆ ˆ

k k k
x x c x x+ − ≤ −‖ ‖ ‖ ‖ 

 
{ }
k
x  converges to x̂  with (q-)order at least p  if there are 1p > , 0c ≥ , and 
0N ≥  such that k N≥ : 

1
ˆ ˆ p

k k
x x c x x+ − ≤ −‖ ‖ ‖ ‖  (quadratic if 2p = , cubic 

if 3p = , and so on) 
 
{ }
k
x  converges to x̂  with j-step (q-)order at least p  if there are a fixed integer 
1j ≥ , 1p > , 0c ≥ , and 0N ≥ , such that k N≥ : ˆ ˆ p

k j k
x x c x x+ − ≤ −‖ ‖ ‖ ‖  
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Norms

A norm on a vector space V  is any function :f V → \  such that 
1.  ( ) 0f x ≥    and ( ) 0 0f x x= ⇔ = , 

2.  ( ) ( )f x f xα α= , 

3.  ( ) ( ) ( )f x y f x f y+ ≤ + , 

where x V∈  and α ∈ \ . 
 
Important vector spaces in this course: n\ , n^ , and m n×\ , m n×^  (matrices). 
Note that the set of all m-by-n matrices (real or complex) is a vector space. 
 
Many matrix norms possess the submultiplicative or consistency property: 
 ( ) ( ) ( )f AB f A f B≤  for all m kA ×∈ ^  and k nB ×∈ ^  (or real matrices). 

 
Note that strictly speaking this is a property of a family of norms, because in 
general ‘each’ f  is defined on a different vector space. 
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Norms

We can define a matrix norm using a vector norm (an induced matrix norm): 
 

 
0 1

max max
x x

Ax
A Ax

x α

α
α α

α
≠ =

= =
‖ ‖

‖ ‖
‖ ‖ ‖ ‖

‖ ‖
 

 
Induced norms are always consistent (satisfy consistency property). 
 
Two norms . α‖ ‖  and . β‖ ‖  are equivalent if there exist positive, real constants a  

and b  such that  
  
 :x a x x b xα β α∀ ≤ ≤‖ ‖ ‖ ‖ ‖ ‖  

The constants depend on the two norms but not on x . 
 
All norms on a finite dimensional vector space are equivalent. 
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Norms

Some useful norms on n\ , n^ , m n×\ , m n×^ : 

p-norms: 
1

1

pn p

iip
x x

=

⎛ ⎞⎟⎜= ⎟⎟⎜⎝ ⎠∑ , especially 1,2,p = ∞, where max
ii

x x
∞

= .  

Induced matrix p-norms are: 

11
max

n

ijij
A a

=
= ∑   (max absolute column sum) 

( )max2
A Aσ=  (max singular value – harder to compute than others) 

1
max

n

ijji
A a

=∞
= ∑  (max absolute row sum) 

 
Matrix Frobenius norm: 

1
2 2

, 1

n

iji jF
A a

=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∑  (similar to vector 2-norm for a matrix) 

 
All these norms are consistent (satisfy the submultiplicative property) 
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Eigenvalues and Eigenvectors

Let Ax xλ=  and yA yλ=� �  (for same λ ).  
 
We call the column vector x  a (right) eigenvector, the row vector y�  a left 
eigenvector, and λ  an eigenvalue, the triple together is called an eigentriple, and 
( ),xλ  and ( ),yλ �  a (right) eigenpair or left eigenpair. 

 
The set of all eigenvalues of A, ( )AΛ , is called the spectrum of A . 

 
If the matrix A is diagonalizable (has a complete set of eigenvectors) we have 
 1A V V AV VΛ Λ−= ⇔ = , 
where V  is a matrix with the right eigenvectors as columns and Λ  is a diagonal 
matrix with the eigenvalues as coefficients.  
 
A similar decomposition can be given for the left eigenvectors. 
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Spectral Radius

The spectral radius ( )Aρ  is defined as ( ) ( ){ }max :A Aρ λ λ Λ= ∈ . 

 
Theorem: 
For all A and 0ε >  a consistent norm .

α
exists such that ( )A A

α
ρ ε≤ + . 

 
So, if ( ) 1Aρ < , then a consistent norm .

α
exists such that 1A

α
< . 

Take ( )( )1 1
2

Aε ρ= −  and apply theorem above. 

 
Define * TA A=  (complex conjugate transpose). 
 
If A is Hermitian ( *A A= ), then ( )

2
A Aρ = . 

 
If A is normal ( * *AA A A= ),then ( )

2
A Aρ = . 
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Fixed-Point Iterations

Under what conditions does 0
k
e →  and ˆ

k
x x→  (convergence) for arbitrary 

0
e ? 

 

Theorem: ( )1
0
0

k

k
e M N e−= →  for arbitrary 

0
e  iff ( )1 0

k
M N− → . 

Proof:  
Let 1G M N−=  and the matrix norm .‖ ‖ be induced by a vector norm. 
 
1.  Assume 0kG →   
Then 0 0k kG G→ ⇒ →‖ ‖ and 

0 0
0k kG e G e≤ →‖ ‖ ‖ ‖‖ ‖  for any 

0
e . 

 
2.  Assume 

0
0kG e →  for all 

0
e .  

Consider the identity matrix 
1 2 n

I η η η⎡ ⎤= ⎢ ⎥⎣ ⎦" . 

1 2
0 0 0k k k k

n
G I G G Gη η η⎡ ⎤ ⎡ ⎤= →⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦" " ; so 0kG →  since k kG I G= . 

Alternatively, consider 
1 2

1

k k k
n

G G Gη η η⎡ ⎤
⎢ ⎥⎣ ⎦"  ( note that 0k

i
G η →  ) 
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Norms

Note that we can generalize the result for the one-norm to all norms by using the 
equivalence of norms on finite dimensional vector spaces. 
 
Similarly, the results are readily generalized for inconsistent matrix norms (with 
AB A B>‖ ‖ ‖ ‖‖ ‖possible), by using the equivalence of norms on finite 

dimensional spaces. 
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Fixed-Point Iterations

Theorem: 0kG →  iff ( ) 1Gρ < . 

 
Proof: 
1. ( )0 1kG Gρ→ ⇒ < . 

For each eigenvalue λ  of G  there exists at least one eigenvector v  s.t. Gv vλ= . 
Then | |k k kG v v vλ λ= =‖ ‖ ‖ ‖ ‖ ‖ and 0kG v → . So, | | 0 | | 1k vλ λ→ ⇒ <‖ ‖ . 

Since this holds for each eigenvalue, ( ) 1Gρ <  must hold. 

 
2. ( ) 1 0kG Gρ < ⇒ → .  

There exists a consistent norm . α‖ ‖ s.t. 1G α<‖ ‖ . 
Hence, 0k kG Gα α≤ →‖ ‖ ‖ ‖ . Therefore 0 0k kG Gα → ⇒ →‖ ‖ . 

 
So 0

k
e →  ( ˆ

k
x x→ ) for arbitrary 

0
e  iff ( )1 1M Nρ − < . 
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Krylov Spaces

Given 
0
x , set 

0 0
r b Ax= − . 

For 0,1,2,k = … 
 1

k k
z M r−= , 

 
1k k k

x x z+ = + , 
 

1 1k k k k
r b Ax r Az+ += − = − . 

 
Note that 1

1k k k k
x x z M r−

+ − = =  and hence 
1 0 0 1k k

x x z z z+ − = + + +" . 

This implies ( ) ( )1 1 1 1 1
1 0 0 0 0

k

k
x x M r M N M r M N M r− − − − −

+ − = + + +" . 

 
So, correction 

1 0k
x x+ −  is given by polynomial ( ) 21 k

k
S t t t t= + + + +" : 

 ( ) ( )1 1 1 1
1 0 0 00

ik

k ki
x x M N M r S M N M r− − − −

+ =
− = = ⋅∑ . 

Note also ( )1
0

k

k
e M N e−=  and ( ) ( )1 1 1

0 0

k k

k
r NM r M M N M r− − −= = . 

14

Similarity Transformation

Let A have eigenpairs ( ),i i
vλ : 

i i i
Av vλ=  

 
Define the similarity transformation: 1BAB−  
 
The matrix 1BAB−  has the same eigenvalues, 

i
λ , as A and eigenvectors 

i
Bv : 

 
 ( )1

i i i i
BAB Bv BAv Bvλ− = =  

 

Show that ( )1
k

M N−  has the same eigenvalues as ( )1 kNM − . 
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Polynomials and Spaces

Main computational cost is in the multiplication by A and solving for M . 
So, we can try to generate better polynomials (faster convergence) at same cost. 
 

Also correction ( ) ( ){ }1 1 1 1 1
1 0 0 0 0

span , , ,
k

k
x x M r M N M r M N M r− − − − −

+ − ∈ …  

We call a space ( ) { }2 1, span , , , , m
m
K B y y By B y B y−≡ …   

the Krylov (sub)space of dimension m  associated with B  and y . 
So,  ( )1 1

0 0
,

m m
x x K M N M r− −− ∈  

 ( ) ( )1 1
0 1 0

,
m

m m
e M N e K M N e− −

+
= ∈  and  

 ( ) ( )1 1 1 1 1
0 1 0

,
m

m m
M r M N M r K M N M r− − − − −

+= ∈ . 

 
Therefore, alternatively we can compute better approximate solutions from the 
same space (faster convergence) at same cost. 
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Krylov Spaces

So, a Krylov space is a space of polynomials in a matrix times a vector. 
 
These spaces inherit the many important approximation properties that 
polynomials on the real line or in the complex plane possess. 
 
For simplicity let the matrix B  be diagonalizable, 1B V VΛ −= . 
Then 2 1 1 2 1B V V V V V VΛ Λ Λ− − −= =  and generally 1k kB V VΛ −= . 
So, the polynomial ( ) 0 1

m
m m
p t t tα α α= + + +"  applied to B  gives 

 
 ( ) ( )2 1

0 1 2
m

m m
p B V I Vα α Λ α Λ α Λ −= + + + +"  and hence 

 ( ) ( ) ( ) ( )( )1 1
1

diag , ,
m m m m n
p B Vp V V p p VΛ λ λ− −= = …  

 
So, the polynomial is applied to the eigenvalues individually.  
This allows us to approximate solutions to linear systems, eigenvalue problems, 
and more general problems using polynomial approximation. 
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Approximation by Matrix Polynomials

Let 1B V VΛ −= , let ( )BΛ Ω⊂ ⊂ ^ . 

  

If ( ) 1
m
p t

t
≈  for all t Ω∈ , then ( ) 1

m
p B B−≈ .  

Let y Vζ= . Then ( ) ( ) 1i
m i m i i ii i

i

p B y v p v B y
ζ

λ ζ
λ

−= ≈ =∑ ∑  

 
Furthermore, let 0ε ≈  and 

i j
λ λ δ− >  (for some eigenvalue 

i
λ ) 

If ( ) and, ,

1, ,
i

m
i

t t
p t

t

ε Ω λ δ
λ

⎧⎪ ∈ − >⎪= ⎨⎪ =⎪⎩
  

then ( )m i i
p B y v ζ≈ . 

 
If we can construct such polynomials for modest m  we have an efficient  linear 
solver or eigensolver. 
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Krylov Spaces

We have ( )1 1 1M N M M A I M A− − −= − = − .  

So,  ( ) ( )1 1 1 1
1 0 1 0

,
k

k k k
x x I M A M r K M A M r− − − −

+ +− = − ∈ , and 

  1 1
1k k

x M Nx M b− −
+ = + ,  

with fixed-point ( )1 1 1 1ˆ ˆ ˆx I M A x M b M Ax M b− − − −= − + ⇔ = . 

So, we solve the preconditioned problem 1 1M Ax M b− −= .  
Preconditioning aims to improve the convergence of Richardson’s iteration 
 ( )1k k
x I A x b

+
= − +  

 
However, with 1A M A−=� , M I=� , and 1b M b−=�  our  iteration becomes 
Richardson’s iteration, and we have Krylov spaces and polynomials based on A� .  
 
Hence, for simplicity we consider A and b  as an explicitly preconditioned matrix 
and vector, and work with Krylov spaces in A and 

0
r  (most of the time). 
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Approximations from Krylov Spaces

Richardson for Ax b=  seeks update ( ) ( )0 0
, ,

m m m
z K I A r K A r∈ − =  

 
How to define an iteration that finds better approximation in same space? 
Given 

0
x  and 

0 0
r b Ax= −  find ( )0,m m

z K A r∈  and set 
0m m

x x z= + . 

 
There are several possibilities. Two particularly important ones are 
 
1.  Find ( )0,m m

z K A r∈  such that 
0m m

r r Az= −‖ ‖ ‖ ‖ is minimal. 

2.  Find ( )0,m m
z K A r∈  such that 

0
ˆ ( )

m m
e x x z= − +‖ ‖ ‖ ‖ is minimal. 

 
The second one seems hard, but is possible in practice for special norms. 
 
Further possibilities for optimal solutions exist, and for non-Hermitian matrices 
certain non-optimal solutions turn out to have advantages as well. 
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Inner Products

Many methods to select 
m
z  from the Krylov space are related to projections.  

 
We call :f S S× → \  an inner product over the real vector space S , if  
for all vectors , ,x y z  and scalars α , 
1.  ( , ) 0f x x ≥  and ( , ) 0 0f x x x= ⇔ =  

2.  ( , ) ( , )f x z f x zα α=  
3.  ( , ) ( , ) ( , )f x y z f x z f y z+ = +  
4.  ( , ) ( , )f x z f z x=  
 
For a complex inner product, :f S S× → ^ , over a complex vector space S  we 
have instead of property (4): ( , ) ( , )f x z f z x= . 
 
Inner products are often written as ,x y , ( ),x y , or ,x y

α
, etc.. 

We say x  and y  are orthogonal (w.r.t α-IP), x yα⊥  if , 0x y
α
= . 
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Inner products and Norms

Each inner product defines, or induces, a norm: ,x x x= 〈 〉‖ ‖ . (proof?) 

 
Many norms are induced by inner products, but not all. Those norms that are 
have additional nice properties (that we’ll discuss soon). 
An inner product and its induced norm satisfy: || ,x y x y〈 〉 ≤ ‖ ‖‖ ‖ (CS ineq) 

 
A norm induced by an inner product satisfies the parallelogram equality: 
 ( )2 2 2 22x y x y x y+ + − = +‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

In this case we can find the inner product from the norm as well: 

Real case:  ( )2 21
,

4
x y x y x y〈 〉 = + − −‖ ‖ ‖ ‖  

Complex case: 

    ( )2 21
Re ,

4
x y x y x y〈 〉 = + − −‖ ‖ ‖ ‖ ,    ( )2 21

Im ,
4

x y x iy x iy〈 〉 = + − −‖ ‖ ‖ ‖  
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Minimum Residual Solutions

First, we consider minimizing the 2-norm of the residual: 
 
Find 

0
( , )

m m
z K A r∈  such that 

2 0 2m m
r r Az= −‖ ‖ ‖ ‖  is minimal. 

The vector 2-norm is induced by the Euclidean inner product *

1

n

i ii
y x y x

=
= ∑ . 

 
It makes sense to minimize the residual, because the error is in general 
unknown, and we can only directly minimize special norms of the error (those 
that don’t require the error ☺). Moreover, 1 1

2 2 2 2m m m
e A r A r− −= ≤‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ , so 

the norm of the error is bounded by a constant times the norm of the residual.  
 
Finally, note that *2 2m m A A

r e Ae= ≡‖ ‖ ‖ ‖ ‖ ‖  (show this is a norm if A regular) 

 
Theorem: 

m
z is the minimizer iff 

0 0
( ) ( , )

m m m
r b A x z K A Ar= − + ⊥ . 

Note that 
0 0
( )

m m
b A x z r Az− + = − . 
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Minimum Residual Solutions

Proof: Let 2
0 2

( )f z r Az= −‖ ‖ .  

Then 2
0 0 2

ˆ ˆ( , ) : min
m

z K A r r Az∈ −‖ ‖ , implies ẑ  is a stationary point of ( )f z : 

For any unit vector 
0

( , )
m

p K A r∈  we have 
ˆ( )

0
f z

p

∂
=

∂
. 

So, 
, 0

ˆ ˆ( ) ( )
lim 0

f z p f z
ε ε

ε
ε∈ →

+ −
=

\
, which gives  

2 2
0 2 0 2

0
* * * 2 * *

0 0

0
* * *

0 0 0

ˆ ˆ
lim

ˆ ˆ( ) ( )
lim 0

ˆ ˆ( ) ( ) 0 ( , ).
m

r Az Ap r Az

p A r Az r Az Ap p A Ap

p A r Az r Az Ap p K A r

ε

ε

ε

ε
ε ε ε

ε

→

→

− − − −
=

− − − − +
= ⇔

− − − = ∈

‖ ‖ ‖ ‖

for any unit vector

 

So, *
0 0

ˆ ˆ( ) 0 ( )r Az Ap r Az Ap− = ⇔ − ⊥  for any unit 
0

( , )
m

p K A r∈  (why?) 
 
Since 

0
( , )

m
Ap K A Ar∈  we have 

0 0 0
ˆ( ) ( , ) ( , )

m m
r Az K A Ar AK A r− ⊥ ≡ . 
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Minimum Residual Solutions

Minimizing a norm (cont. function) is in general complicated. However, the 
orthogonality conditions lead naturally to a linear system of equations. 
 

Let { }1 2
, , ,

m
w w w…  form a basis for ( )0,m

K A r  and { }
1

m

i i
Aw

=
 for ( )0,

m
K A Ar . 

Let 
1 2
[ ]

m m
W w w w= … . Then 

m m
z W ζ=  (for some unknown ζ ). 

 
Now the orthogonality conditions 

0
( )

i m
Aw r AW ζ⊥ −   

yield the linear equations * * * *
01

( )
m

i j j ij
w A Aw w A rζ

=
=∑ . 

 
In matrix form: * * * *

0m m m
W A AW W A rζ =     normal equations (accuracy problems) 

LS problem: 
0 2

min
m

r Kζ ζ−‖ ‖  where 
m m
K AW=  

More accurate to solve LS problem using QR-decomposition. 
 
Solving for ζ  requires only the solution of an m m×  system independent of n . 
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Minimum Residual Solutions

We have seen that 
0 2 0

min ( )
m m m

r K K r Kζ ζ ζ− ⇔ ⊥ −‖ ‖  

Compute 
m m m
K Q R=  (QR-decomposition) where  

 ( )n m n m
m
Q × ×∈ ^ \  s.t. *

m m m
Q Q I=  and n m

m
R ×∈ ^  uppertriangular 

If rank( )
m
K m= , then 

m
R  is nonsingular and range(Q ) range( )

m m
K=  

 
Now 

0
( )

m m
Q r K ζ⊥ −  gives * * *

0 0
0

m m m m m m
Q r Q Q R R Q rζ ζ− = ⇔ =  (easy solve) 

 
Note that * *

0 0 0 0m m m m m m
K Q Q r r K r Q Q rζ ζ= ⊥ − = −  

m
K ζ  is the orthogonal projection of 

0
r  onto ( ) 0

range ( , )
m m
K K A Ar= . 

0m m
r r K ζ= −  is the orthogonal projection of 

0
r  onto ( )0( , )

m
K A Ar

⊥
. 

 
*

m m
Q Q  and *

m m
I Q Q−  are orthogonal projectors. 

P  is projector if 2P P= , orthogonal projector if *(P) (P) PR N P⊥ ⇔ = . 
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Minimum Residual Solutions

Iteration-wise the problem is solved in four steps: 
 
1. Extend the Krylov spaces 

0
( , )

m
K A r  and 

0
( , )

m
K A Ar  by adding the respective 

next vectors 
0

mA r  and 1
0

mA r+  (only 1 matvec) 

2. Update orthogonal basis for 
0

( , )
m
K A Ar : QR-decomp. of 

m
K  

3. Update projected matrix and projection of 
0
r  (orthog) onto 

0
( , )

m
K A Ar  

4. Solve the projected problem, e.g. *
0m

R Q rζ = . Note that this problem is only 
m m×  or ( 1)m m+ ×  irrespective of the size of the linear system. 

These steps vary somewhat for different methods. 
We would like to carry out these steps efficiently. 
 
The GCR method (Generalized Conjugate Residuals) illustrates these steps well. 
(Eisenstat, Elman, and Schulz 1983) 
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Minimum Residual Solutions: GCR

GCR: Ax b=  
Choose 

0
x  (e.g. 

0
0x = ) and tolerance ε ; set 

0 0
r b Ax= − ; 0i =  

while 
2i

r ε≥‖ ‖  do 

 1i i= +      
i
r  adds search vector to 

1 0
( , )

i
K A r

−
 

 
1
;

i i i i
u r c Au

−
= =    

1i
Ar − extends 

1 0
( , )

i
K A Ar−  

 for 1, , 1j i= −…  do   (start QR decomposition) 
  *

i i j j i
u u u c c= −    Orthogonalize 

i
c  against previous 

j
c  and 

  *
i i j j i
c c c c c= −    update 

i
u  such that 

i i
Au c=  maintained 

 end do 
 

2 2
/ ; /

i i i i i i
u u c c c c= =‖ ‖ ‖ ‖  Normalize; (end QR decomposition) 

 *
1 1i i i i i

x x u c r− −= +    Project new 
i
c  out of residual and update 

 *
1 1i i i i i

r r c c r− −= −    solution accordingly; note 
i j
r c⊥  for j i≤  

end do 
 
What happens if 

1i i
c r

−
⊥   
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Minimum Residual Solutions: GCR

From the algorithm we see that if *
1
0

j j
c r − ≠  for 1j i= … : 

 

1 0 0 1 0
span{ } ( , )u r r K A rν= ∈ = ,   ν  is a normalization constant 

1 0 0 1 0
span{ } ( , )c Ar Ar K A Arν= ∈ ∈ . 

1 0 1 1 0 1 0 2 0
( , )r r c r Ar K A rα να= − = − ∈  also 

0 0 1
span{ , }Ar r r∈  

 
By induction (and the statements above) we can show 

1 0 1 0
span{ , , } ( , )

i i j j i ij i
u r u r r K A rβ− −<

= − ∈ =∑ …  

1 0 1 0
span{ , , } ( , )

i i j j i ij i
c Ar c Ar Ar K A Arβ− −<

= − ∈ =∑ …   and also that  

 
i i
c Au= , 

1 2 1
, , ,

i i
c c c c −⊥ … , and * 1

i i
c c =  (last by construction) 

1 0 0 1 1 1 0
span{ , , , , } ( , )

i i i i i i
r r c r Ar Ar Ar K A rα− − += − ∈ =…  
 
These relations hold even if 

0 0 0
{ , , , }mr Ar A r…  are dependent for some m . 

In that case all the spaces have a maximum dimension of 1m + . 
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Minimum Residual Solutions: GCR

Theorem:  
Let *

1
0

i i
c r − ≠  for 1,2, ,i m= … .  Then 

2m
b Ax−‖ ‖  for GCR is minimal. 

We use our earlier theorem on the minimum residual. We have (previous slide) 

0 01

m

m i i mi
x x u x zβ

=
= + = +∑  and 

0
( , )

m m
z K A r∈  as required. 

 
Now we only need to show that 

0
( , )

m m
r K A Ar⊥ . 

Note that our assumption implies 
1
0

i
r − ≠  for 1,2, ,i m= … . 

 
By construction we have * * * * *

1 0 1 1 0 1 1 1 0 1 1 1 0
0r r c c r c r c r c c c r= − ⇒ = − =  

Assume that for 1 1j i= −…  we have 
1 1 2 1

, , ,
j j
r c c c− −⊥ …  (induc. hypo.). 

From *
1 1j j j j j

r r c c r− −= −  we have 
j j
r c⊥ .  

For i j< , * *
1
0

i j i j
c r c r −= =  (from orthogonality 

i
c  and induction hypothesis). 

 
This proves the required orthogonality result since the 

i
c  span 

0
( , )

m
K A Ar . 

30

Minimum Residual Solutions: GCR

Recapitulation of GCR after m  it.s:  
2 0 2
min{ | }

m m m m
r r Az z U ζ= − =‖ ‖ ‖ ‖  

 

0
( , )

i m
u K A r∈ , 

0
( , )

i m
c K A Ar∈ , 

1 0
( , )

i m
r K A r+∈  for 1, ,i m= …  & 0i=  for 

i
r . 

This implies that 
1 0 0
( , ) span{ , , }

i i
K A r r r+ = …  for 0, ,i m= …  (if *

1
0

i i
c r

−
=/ ). 

 
Let 

1 2
[ ]

m m
U u u u= "  and 

1 2
[ ]

m m
C c c c= "  

Then 
m m

AU C= , *
m m m
C C I= , and 

0
range( ) ( , )

m m
U K A r= . 

 
For GCR the projected system is the matrix for the normal equations (but 
computed implicitly): * * * *( ) ( )

m m m m m m m
U A AU AU AU C C I= = = . 

The projected right hand side is *
0m

C r , and so we have *
0m

C rζ = . 
 

m m
z U ζ=  is given by condition *

0
( ) 0

m m
C r AU ζ− = , which gives *

0m
C rζ = . 

This gives *
0m m m

z U C r= , 0m m
x x z= + , and *

0 0m m m
r r C C r= − . 
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Minimum Residual Solutions: GCR

Note that *
m m
C C  and *

m m
I C C−  are both orthogonal projectors. 

 
*

m m
C C  is a projection since * * *

m m m m m m
C C C C C C= .  

*
m m
C C  is an orthogonal projection since *

m m
C C  is Hermitian. 

 
*

m m
I C C− is a projection since  
 * * * * * *( )( )

m m m m m m m m m m m m
I C C I C C I C C C C C C I C C− − = − − + = − . 

*
m m

I C C−  is an orthogonal projection since *
m m

I C C−  is Hermitian. 

32

Discretize ( ) ( )x y x yx y
pu qu ru su tu f− − + + + = . 

 
 
 
 
 
 
 
 
 
 
Integrate equality over box V . Use Gauss’ divergence theorem to get 

( ) ( ) x
x yx yV V y

pupu qu dxdy ndsqu∂

⎛ ⎞⎟⎜+ = ⋅⎟⎜ ⎟⎜⎝ ⎠∫ ∫  

And approximate the line integral numerically. 

Model Problems

(i,j) (i+1,j)

(i,j+1)

(i-1,j)

(i,j-1)

A B

CD

V
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Model Problems

Now we approximate the boundary integral x
V y

pu ndsqu∂

⎛ ⎞⎟⎜ ⋅⎟⎜ ⎟⎜⎝ ⎠∫ . 

 
We approximate the integrals over each side of box V  using the midpoint rule 
and we approximate the derivatives using central differences. 
 

( )1 1/2, 1, ,

C

x i j i j i jB

y
pu n dy p U U

x

Δ
Δ + +≈ −∫  and so on for the other sides 

 
We approximate the integrals over 

x
ru , 

y
su , tu , and f using the area of the box 

and the value at the midpoint of the box, where we use central differences for 
derivatives. So, ( ) ( )1, 1,

/ 2
x i j i j
u U U x+ −≈ − Δ , and so on. 

 
For various examples we will also do this while strong convection relative to the 
mesh size makes central differences a poor choice (as it gives interesting systems). 
 

34

Model problems

This gives the discrete equations 
 

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 2, 1, , 1 2, , 1,

, 1 2 , 1 , , 1 2 , , 1

, 1, 1, , , 1 , 1

, , ,

/ 2 / 2

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j i j

y
p U U p U U

x
x
q U U p U U
y
y r U U x s U U

x yt U x yf

Δ
Δ
Δ
Δ
Δ Δ
Δ Δ Δ Δ

+ + − −

+ + − −

+ − + −

⎡ ⎤− − − −⎢ ⎥⎣ ⎦
⎡ ⎤− − − −⎢ ⎥⎣ ⎦

+ − + −

+ =

 

 
 
Often we divide this result again by x yΔ Δ . 
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Minimum Residual Solutions: GMRES

An alternative is to generate iteration-wise an orthogonal basis for 
1 0
( , )

m
K A r+ . 

The Arnoldi algorithm (iteration) goes as follows: 
Let 

1 0 0 2
v r r= ; 

for 1k m= … , 
 

1k k
v Av+ =� ; 

 for 1j k= … , 
  *

, 1j k j k
h v v += � ; 

1 1 ,k k j k j
v v h v+ += −� � ; 

 end 
 

1, 1 2k k k
h v+ += � ; 

1 1 1,k k k k
v v h+ + += � ; 

end 
 
Note/show the following results: 

1 mm m
AV V H+=  (Arnoldi recurrence) 

 *
1 1 1m m m

V V I+ + +=  (orthogonal),  

 *
1m m m

H V AV+=  (upper Hessenberg) 

36

Minimum Residual Solutions: GMRES

Using 
1 mm m

AV V H+= , we solve ( ){ }0 02
min | ,

m
r Az z K A r− ∈  as follows. 

Let 
m

z V ζ= , and minimize 
0 2m
r AV ζ−  over all m-vectors ζ . 

Note that this is an n m×  least squares problem (as before). 
 
Now substitute 

0 1 1 0 2m
r V rη+=  and 

1 mm m
AV V H+= . This gives 

 

( )1 1 0 1 1 1 0 1 02 2 22 22
m m mm m m

V r V H V r H r Hη ζ η ζ η ζ+ + +− = − = −  

 
The latter is a small ( )1m m+ ×  least squares problem we can solve by standard 

dense linear algebra techniques (e.g. using LAPACK) 
 
We can exploit the structure of mH  and the least squares problem to  
1.  do this efficiently, 
2.  compute the residual norm without computing the residual 



                      

By construction  has the following structureHm

 (Upper Hessenberg)Hm =

h1,1 h1,2 h1,3 £ h1,m−1 h1,m
h2,1 h2,2 h2,3 h2,m−1 h1,m

h3,2 h3,3 § §
h4,3 • hm−1,m−1 hm−1,m

• hm,m−1 hm,m
hm+1,m

Cheapest QR decomp. is by Givens rotations to zero lower diagonal.

G1
HHm =

c1 s1
−s1 c1

Im−1
=

& & £ &
0 & £ &
h3,2 £ h3,m

• §

GMRESGMRES

                                     

Next step we compute:

G2
HG1

HHm =

1
c2 s2
−s2 c2

I

& & & £ &
0 & & £ &
h3,2 h3,3 £ h3,m

h4,3 £ h4,m
• §

=

& & & £ &
0 & & £ &
0 & £ &
h4,3 £ hm,3

• §

After  Givens rotations:m

Gm
H£G1

HHm = Qm+1
H H

m
=

r1,1 £ r1,m
0 r2,2

0 r3,3 §
§ 0 •

• rm,m
0 £ 0

= R
m

GMRESGMRES

26-27 09/04/07 / 2:15 AM



                                    

Theorem: An unreduced  Hessenberg matrix is nonsingular.(m + 1) %m
(unreduced means no zeros on subdiagonal)

Proof: ?

GMRESGMRES

                                     

So the least squares problem

ym = arg min e1ær0æ2 −Hm
y

2
: y Šm

can be solved by multiplying  from left by :H
m
y l e1ær0æ2 Rm

−1Q
m

H

ym = Rm
−1Q

m

He1ær0æ2

In practice:
Stepwise compute  and Gi

H(Gi−1
H £G1

HHi) Gi
H(Gi−1

H £G1
He1ær0æ2)

In Arnoldi step, update  with new column; then carry outHi−1

previous Givens rotations on new column. 
Compute new Givens rotation and update  and right hand side (ofHi

small least squares problem): Gi
H(Gi−1

H £G1
He1ær0æ2)

GMRESGMRES

28-29 09/04/07 / 2:15 AM



                                      

The least squares system now looks like . R
i
yi = Qi+1

H e1ær0æ2
We may assume  has no zeros on diagonal (see later)R

i

Since bottom row of  is zero we can only solve for R
i

 (first  coeff.s)(Qi+1
H e1ær0æ2)1¢i i

This is exactly what we do by solving Riyi = Q
i

He1ær0æ2

Note LS residual norm equals the norm of the actual residual: 
 (  since it changes with ):æriæ2 = q̃i+1H e1 ær0æ2 q̃i+1 i

ær0 − AVmyæ2 = Vm+1e1ær0æ2 −Vm+1Hm
y

2
= e1ær0æ2 −Hm

y
2

This way we can monitor convergence without actually computing
updates to solution and residual (cheap).

GMRESGMRES

                                      

GMRES: Ax = b
CHOOSE  (E.G. ) AND x0 x0 = 0 tol

 r0 = b −Ax0; k = 0; v1 = r0/ær0æ2;
WHILE ærkæ2 > tol

k = k + 1;
ṽk+1 = Avk;
FOR j = 1 : k,

 hj,k = vjHṽk+1; ṽk+1 = ṽk+1 − hj,kvk;
END

 hk+1,k = æṽk+1æ2; vk+1 = ṽk+1/hk+1,k;
UPDATE QR-DECOMP.: Hk = Qk+1Rk
ærkæ2 = q̃k+1H e1 ær0æ2

END

yk = Rk
−1Q

k

He1ær0æ2; xk = x0 + Vkyk;

 (or simply )rk = r0 − Vk+1Hk
yk = Vk+1 I −Q

k
Q

k
H e1ær0æ2; rk = b − Axk

GMRESGMRES

30-31 09/04/07 / 2:15 AM
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So w
e have generated the K

rylov subspace (step 1), and w
e have

an orthogonal basis for it (step 2, m
ore or less). H

ow
ever, w

e do not
have an orthogonal basis for 

. (w
hy not?)

K
m

(A
,A

r0 )=
range(C

m
)

Step 3 is the orthogonal projection of the residual on 
 and com

puting the update to the
K

m(A
,A

r0 )=
range(C

m
)

approxim
ate solution from

 
.

K
m

(A
,r0 )=

range(U
m

)

O
bviously w

e don’t w
ant to orthogonalize 

 in addition.
K

m
(A

,A
r0 )

Q
R-decom

position 
 (m

 G
ivens rotations), 

H
m

h
H

m
+1,m

=
Q

m
+1 R

m
w

here 
 is upper triangular and has last row

 entirely zero.
R

m

W
e can drop last row

 of 
 and last colum

n of 
 giving:

R
m

Q
m

+1

. (dim
ensions?)

H
m

=
Q

m
+1 R

m
=

Q
m

R
m

G
M

R
E

S
G

M
R

E
S

21
01/29/03 / 0:11 A

M
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U
sing this Q

R-decom
position w

e have a Q
R-decom

p. of 
:

A
V

m

; 
A

V
m

=
V

m
+1 H

m
=

V
m

+1 Q
m

R
m

w
here 

 is unitary and 
 is uppertriangular

V
m

+1 Q
m

R
m

So for the cost of 
 G

ivens rotations w
e get the orthogonal basis for

m
 im

plicitly, since 
.

K
m(A

,r0 )
range(A

V
m )=

K
m(A

,A
r0 )

N
ew

 residual and approxim
ate solution: 

rm
=

I−
(V

m
+1 Q

m )(V
m

+1 Q
m ) H

r0
=

r0 −
V

m
+1 Q

m
Q

m HV
m

+1
H

r0
=

(note 
.)

r0 −
V

m
+1 Q

m
R

m R
m −1Q

m H
e

1 ær0 æ
2

v
1

=
r0 / ær0 æ

2

r0 −
V

m
+1 H

m
R

m −1Q
m He

1 ær0 æ
2

and x
m

=
x

0 +
A

−1(rm
−

r0 )=
x

0 +
V

m
R

m −1Q
m He

1 ær0 æ
2

G
M

R
E

S
G

M
R

E
S

22
01/29/03 / 0:11 A

M
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Com
paring w

ith G
C

R, w
e see that apart from

 possibly scaling each
colum

n w
ith a unit scalar:

 and 
 (note the relation 

)
C

m
=

V
m

+1 Q
m

U
m

=
V

m R
m −1

A
U

m
=

C
m

The solution to the least squares problem
 (

 in G
C

R) is given by
f

Q
m HV

m
+1

H
r

0
=

Q
m He

1 ær0 æ
2

N
ote that 

 is the left inverse of 
. 

R
m −1Q

m H
H

m

So, m
ultiplying an equation 

 from
 the left by 

 w
ill give

H
m y

l
f

R
m −1Q

m H

the least squares solution: 
.

y
=

R
m −1Q

m Hf

G
M

R
E

S
G

M
R

E
S

23
01/29/03 / 0:11 A

M
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Minimum Residual Solutions: GMRES

GMRES: Ax b=  
Choose 

0
x , tolerance ε ; set 

0 0
r b Ax= − ; 

1 0 0 2
v r r= , 0k = . 

while 
2k

r ε≥‖ ‖  do 

 1k k= +       
 

1k k
v Av+ =� ; 

 for 1j k= … , 
  *

, 1j k j k
h v v += � ; 

1 1 ,k k j k j
v v h v+ += −� � ; 

 end 
 

1, 1 2k k k
h v+ += � ; 

1 1 1,k k k k
v v h+ + += � ; 

 Solve LS 
1 0 2 2

min kr Hζ η ζ−   ( )
2k

r=  by construction  

 (actually we update the solution rather than solve from scratch – see later) 
end 

0k k k
x x V ζ= + ; 

( )0 1 1 1 0k kk k k k k
r r V H V r Hζ η ζ

+ +
= − = −  or simply 

k k
r b Ax= −  

38

Test problem on unit square:                   grid points

Interior: Boundary

Convergence Restarted GCR

0 0.5 1 1.5 2 2.5 3

x 10
4

-10

-8

-6

-4

-2

0

2
Residual Norm vs Number of Iterations

GCR(5)
GCR(10)GCR(50)

GCR(20)full GCR

GCR(100)

( ) 0u−∇⋅ ∇ =   for  and 
  elsewhere
1 0 1

0

u x y

u

= = =
=

202 202×

10 2
log r

Iteration count
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Convergence restarted GMRES
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x 104
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GMRES(100)
full GMRES
GMRES(50)
GMRES(20)
GMRES(10)
GMRES(5)
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GMRES(100)
full GMRES
GMRES(50)
GMRES(20)
GMRES(10)
GMRES(5)

Test problem on unit square:                     grid points

Interior: Boundary( ) 0u−∇⋅ ∇ =   for  and 
  elsewhere
1 0 1

0

u x y

u

= = =
=

202 202×

10 2
log r

Iteration count

10 2
log r

Iteration count

40

GMRES vs GCR

GMRES(m)
time (s) iterations log10(||r||/||b||)

full 72.888 587 -10
100 40.256 1851 -10
50 41.087 3043 -10
20 63.604 6985 -10
10 111.26 13761 -10
5 199.42 27451 -10

200 x 200 unknowns

rGCR(m)
time (s) iterations log10(||r||/||b||)

full 215.87 587 -10
100 114.04 1851 -10
50 97.89 3043 -10
20 103.56 6985 -10
10 131.69 13761 -10
5 180.88 27451 -10

200 x 200 unknowns
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Iterative M
ethods and 

Iterative M
ethods and 

M
ultigrid

M
ultigrid

4. O
ptim

al K
rylov Subspace M

ethods 
4. O

ptim
al K

rylov Subspace M
ethods 

w
ith short recurrences

w
ith short recurrences

1
01/29/03 / 9:09 A

M
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Consider again how
 G

M
RE

S builds an orthogonal basis for 
:

K
m

+1(A
,r0 )

V
erify that the (A

rnoldi) algorithm
v

1
=

r
0 / ær

0 æ
2 ;

for 
generates the follow

ing recurrence:
k

=
1

:m
,

ṽ
k+1

=
A

v
k ;

for 
.

j=
1

:k,
A

V
m

=
V

m
+1 H

m
+1,m

h
j,k

=
v

j Hṽ
k+1 ;

W
hat does 

 look like?
ṽ

k+1
=

ṽ
k+1 −

h
j,k v

k ;
H

m
+1,m

end
Prove 

 is orthogonal.
h

k+1,k
=

æṽ
k+1 æ

2 ;
V

m
+1

v
k+1

=
ṽ

k+1 /h
k+1,k ;

end
N

ote 
.

H
m

+1,m
=

V
m

+1
H

A
V

m

 and 
. So both

range(V
m )=

K
m(A

,r
0 )

range(V
m

+1 )=
K

m
+1(A

,r0 )
 and 

 from
 G

CR
 contained in 

.
range(U

m )
range(C

m )
range(V

m
+1 )

M
IN

R
E

S (1)
M

IN
R

E
S (1)

2
01/29/03 / 9:09 A

M
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N
ow

 consider A
 being H

erm
itian: A

H
=

A

A
nother w

ay to w
rite the recurrence relation from

 A
rnoldi:

 
, 

A
V

m
=

V
m

+1 H
m

=
V

m H
m

+
v

m
+1 e

m Th
m

+1,m

w
here 

 is the upper 
 part of 

.
H

m
m

%
m

H
m

So, 
.

V
m HA

V
m

=
V

m HV
m H

m
+

V
m Hv

m
+1 e

m Th
m

+1,m
=

H
m

 since 
, and so 

(V
m HA

V
m )

H
=

V
m HA

HV
m

=
V

m HA
V

m
A

H
=

A

 m
ust be H

erm
itian as w

ell.
H

m

This has som
e im

portant consequences ...

M
IN

R
E

S (2)
M

IN
R

E
S (2)
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A
 H

erm
itian upper H

essenberg m
atrix is tridiagonal!

This m
eans that (in exact arithm

etic) w
e need to orthogonalize each

new
 vector 

 only against the vectors 
 and 

.
A

v
i

v
i−1

v
i

W
e could solve the least squares problem

 in the sam
e w

ay as for
G

M
RE

S, except that w
e save on orthogonalizations (inner products

and vector updates).

W
hat is the com

putational cost of 
 iterations of G

M
RE

S?
m

Theorem
: Let 

 be H
erm

itian and let 
 be the vectors

A
v

1 ,
v

2 ,
¢

,
v

m
generated by the A

rnoldi algorithm
 (so they span 

). Then 
K

m(A
,v

1 )
 and so 

.
A

v
i Ωv

1 ,
v

2 ,
¢

,
v

i−2
A

v
i Ω

span
v

1 ,v
2 ,¢

,v
i−2

Proof:

M
IN

R
E

S (3)
M

IN
R

E
S (3)

4
01/29/03 / 9:09 A

M



©
2002 E

ric de S
turler

Proof:

Consider 
. 

v
j HA

v
i =

v
i HA

Hv
j =

v
i HA

v
j

Since 
, w

e have 
.

v
j `K

j(A
,v

1 )
A

v
j `K

j+1(A
,v

j )

W
e know

 
; 

v
i Ω

span
v

1 ,¢
,v

i−1
=

K
i−1(A

,v
1 )

so if 
 then 

 and 
.

j+
1

[
i−

1
w

j[
i−

2
v

i ΩA
v

j
v

i HA
v

j =
0

M
IN

R
E

S (4)
M

IN
R

E
S (4)
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The algorithm
 now

 proceeds as follow
s:

Lanczos recurrence: 
 (T for tridiagonal).

A
V

m
=

V
m

+1 T
m

Lanczos is A
rnoldi in the H

erm
itian case (2 orthogonalizations).

Solve 
 just as in G

M
RE

S:
y

m
=

arg
m

in ær
0 −

A
V

m y æ
2

W
e have 

, 
A

V
m

=
V

m
+1 T

m
=

V
m

+1 Q
m R

m

and w
e com

pute 
 (solving least squares problem

).
y

m
=

R
m −1Q

m HV
m

+1
H

r
0

E
very step w

e update the Q
R-decom

position of 
 and solve 

T
i

. 
R

i y
i =

Q
i He

1 ær
0 æ

2

A
t end w

e update 
 and 

.
x

m
=

x
0 +

V
m y

m
r

m
=

r
0 −

V
m

+1 y
m

N
ote that each step w

e only orthogonalize on previous 2 vectors.
W

hat w
ould seem

 an obvious im
provem

ent. Can w
e do that here?

M
IN

R
E

S (5)
M

IN
R

E
S (5)
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Since w
e only orthogonalize on the previous tw

o vectors, w
e w

ould
like to discard the other vectors.

H
ow

ever, w
e need them

 for the update at the end.

Can w
e update every step and discard the vectors 

?
v

i

The problem
 is that 

 changes and hence 
 changes (in general)

R
m

y
m

com
pletely. So w

e need all previous 
.

v
i

W
e need a trick.

M
IN

R
E

S (6) 
M

IN
R

E
S (6) 
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A
 cunning plan:

Since 
 changes com

pletely every step, apply a change of variables
y

m
A

lternative for update 
: 

V
m y

m
Take 

 and 
.

W
m

=
V

m R
m −1

ŷ
m

=
R

m y
m

=
R

m R
m −1Q

m He
1 ær0 æ

2
=

Q
m He

1 ær
0 æ

2

Then 
 and each iteration only the last com

ponent of  
W

m ŷ
m

=
V

m y
m

 changes. So w
e can update 

 w
ithout keeping all 

.
ŷ

m
W

m ŷ
m

w
i

 from
 the G

ivens Q
R decom

position of a tridiagonal m
atrix is

R
m

uppertriangular w
ith 2 upper diagonals.

 colum
ns are found by solving 

 each iteration.
W

m
W

m R
m

=
V

m
So looking at the last (=

the new
) colum

n w
e have: 

, only 
 not know

n:
w

m r
m

,m
+

w
m

−1 r
m

−1,m
+

w
m

−2 r
m

−2,m
=

v
m

w
m

w
m

=
r

m
,m

−1
(v

m
−

w
m

−1 r
m

−1,m
−

w
m

−2 r
m

−2,m )

M
IN

R
E

S (7)
M

IN
R

E
S (7)
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U
pdate solution: x

m
=

x
0 +

V
m

y
m

=
x

0
+

W
m ŷ

m

Since 
 , contrary to 

, changes only in its last position w
e can do

ŷ
m

y
m

the update iteration-w
ise:

x
m

=
x

0 +
Si=1 m

w
i ŷ

i,m
=

x
0

+
Si=1

m
−1w

i ŷ
i,m

+
w

m
ŷ

m
,m

=
x

m
−1 +

w
m ŷ

m
,m

H
ow

 m
any vectors do w

e need to keep (independent of #
 iterations)?

D
o w

e need 
 to continue the iteration?

rm

W
hat w

ould be an update form
ula for 

?
rm

M
IN

R
E

S (9)
M

IN
R

E
S (9)
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M
IN

RE
S: A

x
=

b

C
H

O
O

SE  
 A

N
D  

, SE
T  

;
x

0
d

r
0

=
b

−
A

x
0

tol
k

=
0

v
1

=
r0 / ær0 æ

2

W
H

ILE  
 D

O
ærk æ

>
tol

k
=

k
+

1;
 (ignore indices less than zero)

ṽ
k+1

=
A

v
k −

tk,k v
k −

tk−1,k v
k−1 ;

tk+1,k
=

æṽ
k+1 æ

2 ;
v

k+1
=

ṽ
k+1 /tk+1,k ;

U
PD

A
T

E  Q
R: 

Q
k+1

=
Q

k G
k ;R

k
=

G
k H(Q

k HT
k );

ŷ
k,k

=
q

k He
1 ær

0 æ
2

 
, 

, 
t

Q
k

R
k

ŷ
k

hQ
k He

1 ær0 æ
2 ;

w
k

=
rk,k −1(v

k
−

w
k−1 r

k−1,k −
w

k−2 r
k−2,k );

x
k

=
x

k−1 +
w

k ŷ
k,k

E
N

D

M
IN

R
E

S (10)
M

IN
R

E
S (10)

10
01/29/03 / 9:09 A

M



Hermitian matrices: Error minimization in the A-norm

We are solving  with initial guess  and Ax = b x0 d r0 = b − Ax0
 is the solution to .x̂ Ax = b

The error at iteration  is , i i = x̂ − (x0 + zi)
where  is the th update to the initial guess.zi Ki(A, r0) i

Theorem: 
Let  be Hermitian, then the vector  satisfies A zi c Ki(A, r0)

 iff zi = arg min{æx̂ − (x0 + z)æA : z c Ki(A, r0)} ri h r0 − Azi
satisfies .riΩKi(A, r0)

The most important algorithm of this class is the Conjugate Gradient
Algorithm.

Conjugate Gradients (1)Conjugate Gradients (1)

Proof:
 zi = arg min{æx̂ − (x0 + z)æA : z Ki(A, r0)} w

(x̂ − x0) − ziΩAKi(A, r0)

We know . Ki(A, r0) = span r0, r1,¢, ri−1

This gives rkΩA(x̂ − x0 − zi ) for k = 0,¢, i − 1 g

…A(x̂ − x0 − zi ), rk   for k = 0,¢, i − 1 g

…b − Ax0 − Azi, rk   for k = 0,¢, i − 1 g

…r0 − Azi, rk   for k = 0,¢, i − 1 g

…ri, rk   for k = 0,¢, i − 1 g

riΩKi(A, r0)

Conjugate Gradients (2)Conjugate Gradients (2)
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So we can minimize the error by choosing the update such that the
new residual is orthogonal to all previous residuals. Hence, the name
orthogonal residual methods.

(note the comparison between Orthomin(1) and Steepest Descent)

We can generate an orthogonal basis for the Krylov subspace using
the Lanczos iteration, the 3-term recurrence version of the
Arnoldi-iteration.

Conjugate Gradients (3)Conjugate Gradients (3)

Lanczos iteration:
CHOOSE ; q1 0 = 0; q0 = 0;
FOR  DOi = 1, 2,¢

q̃i+1 = Aqi;
i = …Aqi,qi ; q̃ i+1 = q̃i+1 − iqi; q̃i+1 = q̃i+1 − i−1qi−1;
i = æq̃ i+1æ2; qi+1 = q̃i+1/ i;

END

Show  sets . (one argument is theq̃i+1 = q̃i+1 − i−1qi−1 q̃i+1Ωqi−1
symmetry of the Hessenberg matrix for Arnoldi, give another)

This algorithm generates the recurrence relation:

, where , .AQi =QiTi + iqi+1eiT Qi = [q1 q2 £ qi ] Ti =

1 1 0 £

1 2 2 •
0 2 ••
§•••

Conjugate Gradients (4)Conjugate Gradients (4)
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Use Lanczos orthonormal basis for minimizing A-norm of error.
 zi = arg min{æx̂ − (x0 + z)æA : z Ki(A, r0)}

iff  satisfies .ri h r0 − Azi riΩKi(A, r0)

q1 = r0/ær0æ2;
Lanczos method:AQi = QiTi + iqi+1eiT

Solve r0 −AQiyiΩQi w Qi
H(ær0æ2q1 −AQiyi) = 0w

.Qi
H(ær0æ2q1 − AQiyi) = 0wær0æ2e1 −Qi

HAQiyi = 0

Notice .range(Qi) = span{r0, r1,¢, ri−1}
AQi = QiTi + iqi+1eiT u Qi

HAQi = Ti

So we reduced our problem to solving :ær0æ2e1 − Tiyi = 0

yi = Ti−1e1ær0æ2

Conjugate Gradients (5)Conjugate Gradients (5)

In order to update step-by-step we use same trick as in MINRES:

Let ; then , where  is unitTi = LiDiLi
H yi = Li

−HDi
−1Li

−1e1ær0æ2 Li

lower bi-diagonal with lower diagonal coeff.s,  (indexl1, l2,¢, li−2
gives the column)

Change of variables:  and : Pi =QiLi
−H ŷi =Di

−1Li
−1e1ær0æ2 Qiyi = Piŷi

Each iteration only the last component of  changes. From ŷi
 we get a recurrence for :  PiLi

H = Qi pi pi + li−1pi−1 = qi (p1 = q1)

So every new step we compute a new , we update theqi+1
decomposition of  and from that  and .Ti ŷi+1 pi+1

xi = xi−1 + piŷ i,i

 (where  is ith comp of vector )ri = ri−1 −Apiŷ i,i = qi+1 iŷ i,i ŷi,i ŷi

Conjugate Gradients (6)Conjugate Gradients (6)
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This leads to the coupled two-term recurrence form of CG

CG algorithm:  Ax = b
CHOOSE ; x0 t r0 = b −Ax0

; p1 = r0 i = 0

WHILE  DOæriæ2 > tol
i = i + 1;
i =

…ri−1,ri−1 
…pi−1,Api−1  

;
xi = xi + ipi;
ri = ri−1 − iApi;
i =

…ri,ri  
…ri−1,ri−1 

;
pi = ri − ipi−1;

END

Conjugate Gradients (7)Conjugate Gradients (7)
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