[T} VirginiaTech

Invent the Future

. Fixed-Point Iterations,
Krylov Spaces, and Krylov Methods

Fixed-Point Iterations

Solve nonsingular linear system: Az =5 (solution T= Ailb)

Solve an approximate, but simpler system: Mfco =b — r, =M )

Improve the solution using the residual: T, = b— AIO (iterative refinement)

Error, e, = T — T, satisfies Ae[) =b— ALL’U =T

Don’t compute exact error, instead solve Mz[) =T, and set T, =%, + 2,

Iterate:
ro=b— Az, =b— A(z/}fl + qu) =r_ —Az_|
z, = M’lrk (solve Mz, =)
Loy =T, T2

Methods: Jacobi iteration (&iagonal), Gauss-Seidel (upper triangular), many
others such as (S)SOR, ...
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Fixed-Point Iterations

Convergence of such iterations?

Let A= M — N (matrix spli’cting).

Then Mz, =b— Az, < Mz, =b— Mz, + N, & Mz, = Nz, +b
(fixe(l-point iteration z, | = MﬁlN:Ek_ +M7'b)

Note that the {'ixecl—point is the solution (proo£?)

EI‘I'OI'Z
e, =21—1, = M7'Nz 4+ M'b— M’lNgvk_l — M
=MN(é—=_,)=M"Ne_

= (MN) e,

1

Residual: o= (]\7]\471 )k T and M717;€_ = (Mle)k (MflTO) (proof?)

To analyze convergence we need to introduce/review a number of concepts

" JAE
Rate of Convergence

Let & be the solution of Az = b, and we have iterates Ty Ty, Ty

{z,} converges (q-)linearly to # if there are N > 0 and ¢ € [0,1) such that for
E>Nillz,, —il<ecllz, —il,

{:Ek} converges (q-)superlinearly to Z if there are N >0 and a sequence {Ck}
that converges to () such that for k >Nl Ty — zl< c, Il T, — z |l

{Ik} converges to T with (q—)orcler at least p if there are p > 1, ¢ >0, and
N >0 such that k> N || T, - zl<cll T, — z I? (qua(lratic if p=2, cubic

if p =3, and so on)

{Ik} converges to with j-step (q-)order at least P if there are a fixed integer
17>1,p>1, CZO,anclNZO,suchthatkzN: ||xk+].*i'"§6||$k7i'||p
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Norms

A norm on a vector space V' is any function f:V—-=R such that
1.f<$>20 and f(:v)zO@m:O,

2. f(a:c):|a|f<$),
3. f(:v+y)§f(:v)+f(y),
where £ € V and a € R.

Important vector spaces in this course: RrR", C", and R™", C™" (matrices).

Note that the set of all m-]oy-n matrices (real or complex) is a vector space.

Many matrix norms possess the suljmultiplicative or consistency property:

f(AB) < f(A)f(B) forall A€ C™" and B € C™" (or real matrices).

Note that strictly speaking this is a property of a family o norms, because in
Y sp g property Y
general ‘cach’ fis defined on a different vector space.

Norms

We can define a matrix norm using a vector norm (an induced matrix norm):

Al =max——= =max | Az |l
w0 |zl llzll, =1 a
(a3

Induced norms are always consistent (sa’cisfy consistency property).

Two norms || ||a and II .1l , are equivalent if there exist positive, real constants a

a.n(l b suc}l tlla’c

Vorallzll <lzll, <blal,

The constants depencl on the two norms but not on z.

All norms on a finite dimensional vector space are equivalent.




Norms

Some use£u1 norms on R", (C", Rmxn, (men:
1
[ n
=Xk
i=1|
Incluced matrix p-norms are:
n
"A = max g
1 j i=1

"A"2 =0 . (A) (max singular value — harder to compute than o’chers)

n
"A" = max Z ,
o0 i j=1

o], = mas|r,
00 i 4

i

p]p, especiaﬂy p =1,2,00, where

p-norms: ||CE
P

(max absolu’te column sum)

a.
ij

(max al)solute row sum)

a.
i
Matrix Frobenius norm:
n 2 E
||A||F = Z |au.| (similar to vector 2-norm for a matrix)

ij=1

All these norms are consistent (satisfy the sul)multiplicative property)

Eigenvalues and Eigenvectors

Let Az = Az and gA =y ({or same \).

We call the column vector = a (rig}lt) eigenvector, the row vector Y a left
eigenvector, and A an eigenvalue, the Jc1rip1e together is called an eigentriple, and

()x7:E> and ()ij) a (right) eigenpair or left eigenpair.
The set of all eigenvalues of A, A(A), is called the spectrum of A.

If the matrix A is diagonaliza]ole (has a complete set of eigenvectors) we have
A=VAV ' & AV =VA4,
where V' is a matrix with the right eigenvectors as columns and A is a diagonal

matrix with the eigenvalues as coefficients.

A similar decomposition can be given for the left eigenvectors.
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Spectral Radius
The spectral radius P (A) is defined as p(A) = max {|)\| A€ A(A)}.

Theorem:

Forall 4 and € > 0 a consistent norm “

aexists such that "A"a <p (A) +e.

So, if p (A) <1, then a consistent norm “ .

exists such that ||A
Take ¢ = % (1 —p (A)) and apply theorem above.

<1.

Define A" = A" (complex conjugate transpose).

If A is Hermitian (A = A"), then p(4) = "A" .

2

If A is normal (AA* = A*A),then p(A) = "A"

= JEE
Fixed-Point Iterations

Under what conditions does e — 0 and z, — T (convergence) for arl)itrary 60?

k k
Theorem: e, = (Mle) e, =0 for arbitrary €, iff (Mle) — 0.
Proof:

Let G = M 'N and the matrix norm Il . Il be induced l)y a vector norm.

1. Assume G* — 0
Then G* — 0= I G* I — Oand I ero <l G* (11l € I—0 for any €.

2. Assume ero — 0 for all €,
Consider the identity matrix I = [771 7,01, }
G'T = [Gn, Gy, -G, | = [00--0]; 20 GF — 0 since @1 = G*.

Alternatively, consider

Gknl G’“n2 Gknn] ”1 ( note that Gkni —0)

10




Norms

Note that we can generalize the result for the one-norm to all norms l)y using the

equivalence of norms on finite dimensional vector spaces.

Similarly, the results are reaclily generalize(i for inconsistent matrix norms (Witll

IABI>I Al B ||possil)le), l)y using the equivalence of norms on finite

dimensional spaces.
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Fixed-Point Iterations

Theorem: G* — 0 iff p(G) <1.
Proo{:
1.G* —>O:>p(G)<1.

For each eigenvalue A of G there exists at least one eigenvector v s.t. Gv = Av.

Then Il G*o = Ao = A [l 0 1l and G0 — 0. So, | APl — 0= | A| < 1.
Since this holds for each eigenvalue, P (G) < 1 must hold.

2. p(G)<1éGk — 0.
There exists a consistent norm || . ||“s.t. IIG ||” <1.
Hence, |l Gt ||a <IG ||Z — 0. Therefore I G* ||a S0=G"=>o0.

Soe, — 0 (z, — ) for arbitrary € iff p(MﬁlN) <1.

12
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Krylov Spaces

Given z,, set T, = b —A:CO.
For k =0,1,2,...

z, :M"lrk,
Lo =2, + 2,
T = b— A‘/Ekﬂ =" _Azk‘

I o _
Note that T, —x, =z =M and hence T, —T, =z, +z ot

k
This implies 7, ,, — 2, = M7, + (M7'N) M5, + -+ (M~'N) M7y,

So, correction T, ., —,is given by polynomial S, (t) =1+t+t +- 1"
k 1 4 ~1 -1 -1
z,, — 1, :ZIZO(M N) M =8 (M N)-M .

Note also ¢, = (M "N} ¢, and r, = (NM ) 7y = M(MN) M.
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Similarity Transformation

Let A have eigenpairs (/\NU;): Avi =Av

Define the simi/arity transformation: BAB™
The matrix BAB ™" has the same eigenvalues, )\i, as A and eigenvectors Bv :
BAB ™ (Bv,) = BAv, = \ By,

k

Show that (M_lN)k has the same eigenvalues as (NM_l)

14




Polynomials and Spaces

Main computationai cost is in the multiplication i)y A and soiving for M.

So, we can try to generate better poiynomiais (faster convergence) at same cost.

k
Also correction 7, | — 1, € Span{M ' (MON) M (MOIN) M 17'0}

We call a space Km (B, y) = span {y, By, B‘Zy’,..,Bm—ly}
the Kryiov (sui))space of dimension m associated with B and Y.
So, z, —z, €K, (M™'N, M5,

e = (M’lN)m e, €K (M’IN,eO) and

M7y, =(MON) My €K, (MON, M),

m

Therefore, aiternativeiy we can compute better approximate solutions from the

same space (iaster convergence) at same cost.

15
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Krylov Spaces

So, a Kryiov space is a space o][pa/ynamia/s in a matrix times a vector.

These spaces inherit the many important approximation properties that

polynomia]s on the real line or in the complex piane possess.

For simpiicity let the matrix B be diagonalizainie, B=VAV™".
Then B> = VAV 'VAV ' = VAV " and generaiiy B =vAV.
So, the poiynomial D, (t) =aq,tat+-+a t" appiied to B gives

D, (B) =V (Ozof + OélA + 042/12 + -+ Ozm/lm)vfl and hence
p, (B)=Vp, (A)V" =Vdiag(p, (X),-p, (A))V"

So, the poiynomiai is appiieci to the eigenvalues inclivi(iuaiiy.
This allows us to approximate solutions to linear systems, eigenvaiue pro]oiems,

and more generai proi)ierns using poiynomiai approximation.

16




Approximation by Matrix Polynomials

Let B=VAV ", let A(B) cnccC.

If p

m

(t) %% for all t € 2, then D, (B) ~ B

Let y = V¢. Then D, (B)y = Zivipm ()\Z)CZ ~ Z,,;vz_i =By

F‘urtilermore, let e ~ 0 and |)‘1, - )\j| >0 (1[01' some eigenvalue )\Z)
e, te€ and |t—/\1.|> 6,

then D, (B)y =g,

If we can construct such poiynomiais for modest m we have an efficient linear

solver or eigensoiver.

17

* JE
Krylov Spaces

We have M™'N = M (M—A) =I1-M"A.

So, @, —wm =(I-MTA) M €K,
x, , =M"'Nz, +M'b,

with fixed-point & = (I — M A} + M 'b < M 'As = M.

So, we solve the preconaZitioncaI proi)iem M Az =M"b.

Preconditioning aims to improve the convergence of Richardson’s iteration

T, = (I—A)xk +b

(]\([7114.7 Mﬁlr[] ), and

However, with 4 = MflA, M= I, and b = M7'b our iteration becomes

Richardson’s iteration, and we have Kryiov spaces and poiynomiais based on A.

Hence, for simpiicity we consider A and b as an eXpiicitiy precon&iitione(i matrix

and vector, and work with Kryiov spaces in A and T (most of the time).

18




Approximations from Krylov Spaces

Richardson for Az = b seeks update z €K, (I — A 7’0) =K (A, 7’0)

How to define an iteration that finds better approximation in same space?

Given z, and T = b— A:L“O find z, € Km (A, 7’0) and set T, =T, +Z .
There are several possibilities. Two particularly important ones are

1. Find z € K (A, 7’0) such that Il II=1ll7) — Az Il is minimal.
2. Find z, € Km (A, 7"0) such that IIemll =z - (mo + Zm)” is minimal.

The second one seems hard, but is possi]o]e in practice for special norms.

Further possil)ilities for optimal solutions exist, and for non-Hermitian matrices

certain non—optimal solutions turn out to have advantages as well.

19

Inner Products
Many methods to select z, from the Krylov space are related to projections.

We call f:8%x8S — R an inner product over the real vector space S, if
for all vectors =, Y, 2 and scalars «,

1. f(z,7) >0 and f(z,7) =0& 1 =0

2. flaw,z) = af(z,2)
3. f(x+y,2) = fl,2) + f(y,2)
4. f(z,2) = f(22)

Fora complex inner product, f:8%x8 —C, overa complex vector space S we

have instead of property (4): f(z,2) = f(z,x).

Inner products are often written as <:L’,y>, (x,y), or <x,y> , ete..
We say z and Y are orthogonal (w.r.t a-1P), z J_w Y if <:1:,y> =0.

20
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Inner products and Norms

Each inner product deﬁnes, or induces, anorm: [zl = ﬁ(a:,:v) . (proof?)

Many norms are induced ]oy inner products, but not all. Those norms that are
have additional nice properties (that we'll discuss soon).
An inner product and its induced norm satisfy: [(z,y)| <llzlllyll (CS ineq)

A norm induced Ly an inner product satisfies the parauelogram equality:
lz+yl + e =y =2(1zl + iyl
In this case we can find the inner product from the norm as well:
1
Real case: (z,y) = Z("I + yIIZ —llz— yIIQ)
Complex case:

1 . 1 . .
Re(z, y) = Z(na: +ylP —lle—ylP), Tmizy) = Z(na: +iylP =l — iyl

21
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Minimum Residual Solutions
First, we consider minimizing the 2-norm of the residual:
Find FARNS Km(AJ;]) such that || T"m”2 = T, = Azm ||2 is minimal.
The vector 2-norm is induced Ly the Euclidean inner product y*x = Zzn:l Uz, .
It makes sense to minimize the residual, because the error is in general
unknown, and we can only clirec’cly minimize special norms of the error (those
that don’t require the error ©). Moreover, |l em||2=||1471'rm||2 <A™ ||2|| T ||2, so
the norm of the error is bounded l)y a constant times the norm of the residual.
Finaﬂy, note that || 7"m||2 = ||em||A*/1 =|Ae ||2 (show this is a norm if 4 regular)
Theorem: z, is the minimizer iff r,o= b— A(l’o + zm) 1 Km (A, ATO).
Note that b — A(z, + 2, ) =1, — Az .

22
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Minimum Residual Solutions

Proof: Let f(z) :”7“0 - AZ”Z
Then 2 € Km (4, 7“0) : ||72J — Ai”; min, implies Z is a stationary point of f(z):

of(2)
dp

=0.

For any unit vector p € Km (A, T(]) we have

s, lim LGP = C)

e€R,e—0 I

=0, which gives

2 2 z 112
lim lr —AZ—eApll) —Ilr, — AZ I _
e—=0 I

—gp*A*(T’O —Az)—e(r, — AZ) Ap+e*p A" Ap B

lim
e—0

0
€
p A (r, —A2)—(r, — A2) Ap =0 for any unit vector p € K (Ar).
So, (7’0 — Aé)* Ap=0<& (T‘O —Az) L Ap for any unit p € Km<A, 7”0) (why?)
Since Ap € K,’l(A,AT()) we have (T‘D —Az) L Km(A,ATO) = AKm(A,TO).

23
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Minimum Residual Solutions

Minimizing a norm (cont. function) is in general complicated. However, the

orthogonality conditions lead naturaﬂy to a linear system of equations.

m

| for K (4,4r, ).

0

Let {wl,wQ,...,wm} form a basis for Km (A, ’r;]) and {Awl}
Let W = [wl w, ...’wm]. Then z =W ¢ ({:or some unknown ().

Now the orthogonality conditions Aw, L (r, — AW ()
yield the linear equations Z;n:l (w:A*ij )X, = ’LU;A*TO.

J

In matrix form: W;A*A W (= W;A*TO normal equations (accuracy problems)
LS problem: min, Ilr, — K (I, where K =AW,

More accurate to solve LS prol)lem using QR—decomposition.
Solving for ¢ requires only the solution of an m xm system independent of n.

24
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Minimum Residual Solutions

We have seen that min_llr, — K ¢ll,& K, L (5, — K, ()
Compute K, = Q R, (QR-decomposition) where

Q eC™ (R"X’") st.Q Q =1 and R € C"™" uppertriangular
If rank(K ) = m, then R  is nonsingular and range(Q, ) = range(K )

m

NOW Qﬂl l (T(J - KWC) gives Qx rl) - Q::IQ

m

R(=0< R (=Q r (easy solve)

m-om m m 0

5

Notethat K (=Q Q'n Lr—K (=1 —-Q Q'n
K,”C is the orthogonal projection of T, onto range (K ) =K (A,ATO).

m m

m

ro=1 - KmC is the or’chogonal projection of T, onto (Km (A,AT(]))L.

QMQ; and I — Q Q* are orthogonal projectors.

m ¥m

P is projector if P =P, orthogonal projector if R(P) LN(P) <= P =P.

25

Minimum Residual Solutions
[teration-wise the prol)lem is solved in four steps:

1. Extend the Krylov spaces Km (4, 7“0) and Km (A,A?“O) loy adding the respective

next vectors AmTO and AWHTO (only 1 matvec)
2. Update orthogonal basis for K (A Ar): QR-decomp. of K,
3. Upcla’ce projected matrix and projection of T (orthog) onto K (4, AT’O)

4. Solve the projected prol)lem, e.g. R( = Q;TO. Note that this prol)lem is only

mXm or (m + 1) X m irrespective of the size of the linear system.

These steps vary somewhat for different methods.
We would like to carry out these steps egicienﬂy.

The GCR method (Generalized Conjugate Residuals) illustrates these steps well.
(Eisenstat, Elman, and Schulz 1983)

26
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Minimum Residual Solutions: GCR

GCR: Az =b
Choose 7, (e.g. z, = 0) and tolerance ¢; set n=b—Az;i=0

while ||'I’Z ||22 e do

t=1+1 T adds search vector to K. _(Ar)
u, =1_;c¢ = Au, Ar extends K. (A Ar)
for j=1,...,i—1do (start OR decomposition)
U =u —ucc Orthogonalize ¢ against previous ¢ and
i i JjJ i T J
¢ =c—ccec update u, such that Au. = ¢ maintained
i i AR i i i
end do
u, = U, /|| C[||2; ¢, = /||CL||2 Normalize; (encl QR clecomposition)
r, =z, +u c;rH Project new ¢, out of residual and upclate
T=T_, —CCT solution accordingly; note r L ¢ for j<i
end do

What happens if c, Lr

1

27
Minimum Residual Solutions: GCR
From the algorithm we see that if 6;7”]_71 =0 for j=1...1:
u, = vr, € span{r } = K (A1), v is a normalization constant
¢, = vAr, € span{Ar,} € K (A Ar,).
r=r —ac =1 —voAr, € K, (A1) also Ar, € span{r,r}
By induction (and the statements above) we can show
u =71 - Zmﬁjuj €span{rn,....,r_ } = K. (47)
¢, =Ar  — ZM ﬁ]c] € span{Ar,...,Ar_ } = K (A, Ar)) and also that
c.=Au, c Lc,c,....c,_, and C:‘Ci =1 (last by construction)
r=r_ —ac €span{r, Ar Ar,... Ar_} =K _ (A1)
These relations hold even if {TO, AT‘O, c, AT 7"0} are (lepen(lent for some m.
In that case all the spaces have a maximum dimension of m + 1.
28
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Minimum Residual Solutions: GCR

Theorem:
Let c;r =0 for i = 1,2,....m. Then I — AJ:m”2 for GCR is minimal.

i1
We use our earlier theorem on the minimum residual. We have (previous slide)

m .
z, =T, + 27:1 ulﬂZ =z, +z, and z, € Km (4, To) as requlred.

m

Now we only need to show that r. LK (AAr).

Note that our assumption implies r, =0 fori=12...,m

. % % %
By construction we have =T =T =T =0T — c1 Clcl'l’ =0

Assume that for j =1...7— 1 we have T L Lesc ¢, (induc. hypo.).

17727

Fromr =7  —ccr  wehaver L c.
J i1 JigL J J
For 1 < j, C:’r’j = C:T]—l =0 (from ortllogonality ¢, and induction hypotllesis).

This proves the required orthogonality result since the ¢, span K m (4, A?"U).

29

Minimum Residual Solutions: GCR
Recapitula’cion of GCR after m it.s: ||7“m||2= min{ll Azm|| | z, = m(}

u €K (Ar), c €K (AAr), reK (An)fori=1..m&i=0{forr.

This implies that Kz+1(A’T0) = Span{ro,...,rl} fori=0,..., 1£ e 75 0).

Let U =[uu,~u Jand C =lc ¢, ¢ ]

172 172

Then AU =C ,C C =1, and range(U )= K, (Ar,).

m’ m m m

For GCR the projectec] system is the matrix for the normal equations (l)ut
computed implicitly)‘ U* AA U =(4 Um)* (A Um) =CC =1

The pro]ectea’ r1gl1t hand 51a7e' 1s C and so we have ¢ = C;’I“U

[)’

z = UWC is given hy condition C;(T — AU C) =0, which gives ( = C;To.

m

Thisgives 2, =U C'r,z =z,+2 ,and 1. -C Cr

m—_m 0’ g m-m [)

30
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Minimum Residual Solutions: GCR

Note tha’t CWC; ancl I— Cmc; are both or’t}logonal projectors.

cc is a projection since C' cCcc =CcC

m - m m-_m_ m_m m-m"

Cm(J; is an orthogonal projection since CMC; is Hermitian.

I - Cmc;is a projection since
(I-cc)yi-cc)y=1-cc —-Ccc +CC =I1-CC..

I— Cm C; is an ortllogonal projection since I —C C*L is Hermitian.

mom

31
"
Model Problems
Discretize —(puz )Z - (quy )U +ru, +su, + tu=f.
D (ij+1)) C
7
Z /// 9%
MG /// Bo)
(i-1 iy i+1]
7/
2% //
A B
—
Integrate equality over box V. Use Gauss’ divergence theorem to get
= bu, 1.
S (pu,) +(qu,) dedy = fw[qu;] nds
And approximate the line integral numericaﬂy.
32
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Model Problems

-nds.

Now we approximate the Loundary in’cegral f [ggr
av | 4%,

We approximate the integrals over each side of box V using the midpoint rule

and we approximate the derivatives using central differences.
o A
fB puxnldy ~ A_ZPHW’] (UHL] — Uw> and so on for the other sides

We approximate the integrals over 1, U, tu, and fusing the area of the box
and the value at the midpoint of the l)ox, where we use central differences for

— Uy._l_j) / (2A$>, and so on.

derivatives. So, u =~ (U )
T i+1,j

For various examples we will also do this while strong convection relative to the

mesh size makes central differences a poor choice (as it gives interesting systems).

33
o
Model problems
This gives the discrete equations
Ay
—A_x pi+1/2,j (U1'+1,j - Uw‘) - pi—l/Z,j (Ui,j - Uz'—Lj )}
Az
_A_y qi,j+l/2 (Ui.j+1 - Ui,j) - pi.j—l/? (Ui,j - Uy:,jq )}
+(Ay / 2)% (UHLJ' - Ui—l,j) + (Ax / 2)31',]' (Um'ﬂ n Uw‘—l)
+AwAyti,jUéﬁj = AmAyf”.
Often we divide this result again l)y AxAy.
34
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" A
Experiments with GCR

Solve Au = 0 on unit square with Dirichlet boundary conditions.

Note the modest deterioration of convergence rate as discretization
becomes finer (so cost slightly worse than linear)

72X 72
H2 X H2
32x32 |.

log,y 1.,

IA ° 1 1 1 1
0 50 100 150 200 250

nr. of iteration (matrix-vector products)



" A
Experiments with GCR

Eigenvalues of the discrete Laplacian for three discretization sizes

For this problem, the smallest eigenvalues and the number of small
eigenvalues matter most (as we shall consider later in more detail)

Eigenvalues close to 0 for all

All eigenvalues for 32 x 32 mesh three meshes

1

2
72X 72
0.5 15
e ~ e
= =
A L 2 ® ® O [ J [ 2 N J [ 1] L 2 ®
= 0 =
e e D2 X H2
0.5
-0.5 32 x 32
0 . . . .
.Ao 2 4 6 3 002 0 0.02 0.04 0.06 0.08 0.1 0.12

Re Ayv Re Ayv
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Experiments with GCR

> Convergence for 322 x 322 problem using GCR restarting every 200 it.s
> Restarting saves memory and time (from excessive orthogonalizations)
> No preconditioning

> Runtime: ~15 minutes on laptop (Intel Core 2 Duo P8700 @ 2.53 GHz)

N L) ) L) L)

GCR(200)

0 500 1000 1500 2000 2500
nr. of iterations
37



" A
Experiments with GCR

» Convergence for 322 x 322 problem using preconditioned GCR
> Restarting saves memory and time (from excessive orthogonalizations)
» Preconditioner: Incomplete ILU without fill-in

» Runtimes: GCR(50) ~ 2 min., GCR (without restart) ~ 4 min.

GCR(50)

GCR

0 100 200 300 400 500 600 700 800
nr. of iterations 38
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Minimum Residual Solutions: GMRES
An alternative is to generate iteration-wise an ortllogonal basis for K

The Arnoldi algorithrn (iteration) goes as follows:
Let v = /[,

m+1( 0

for k=1...m,
Uy, = Aug;
for j=1...k,
h AR j
ik VUi Ve = Y T Y0
end
P = "vkﬂ"Q; Vo = Uk+1/hk+1.k;

end

Note/show the foﬂowing results: A Vm =V H_( noldi recurrence)

m—+1=—m
*

v v =1 (orthogonal),

m+1" m+1 m+1
*

H,=V AV (apper Hessenberg)

m+1

Ar).

35

= JEE
Minimum Residual Solutions: GMRES

m+1

Using AV =V _H,_, we solve min {"7’0 — Az||2 lze K (A, T )} as follows.
Let z =V (, and minimize "'rﬂ —-AV ¢ "2 over all m-vectors C.

Note that this is an 7 x m least squares prol)lem (as before).

Now substitute =V .m "7"0"2 and A v =V H,. This gives

= Vo (ol = 2|, = [ bl ~ 2.¢

Vm+1nl ||r0||2 - ‘/m+1£"l<‘- o N = o

The latter is a small (m + 1) xm least squares problem we can solve l)y standard

dense linear algeln'a techniques (e.g. using LAPACK)

We can exploit the structure of o, and the least squares problem to

1. do this efficiently,
2. compute the residual norm without computing the residual

36
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26-27

GMRES

By construction H, has the following structure

[ hithighis o hima him
ho1hophos homat1  him
h3p h33 : :
ha3 "~ hmima R
) hm,m—l hm,m

=
Il

(Upper Hessenberg)

- hm+1,m -

Cheapest QR decomp. is by Givens rotations to zero lower diagonal.

- * ¥ *
C1 §1 0
- * *
G{IHm = —=51C1 =
- h3p - ham
Im—l ., :

Next step we compute:

1 [ % % - % [ x % x *

. 0 % % -+ % 0 x % *
HH €2 52
G;GTHy = i h3p h3z = h3,m | = 0 = *
—$2C2 huv o h Jias o h
I 43 4m 43 m,3
After m Givens rotations:
—rl,l cee rl’m 1
0 ran
0 ris
H...rH _NH _ > _
Gm Gl I;Im - Qm+II;Im - 0 _Bm
mm
L 0 0 |

09/04/07 / 2:15 AM
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GMRES

Theorem: An unreduced (m + 1) xm Hessenberg matrix is nonsingular.
(unreduced means no zeros on subdiagonal)

Proof: ?

GMRES

So the least squares problem

Ym = arg min{ H61 7ol —IimyH , :yeC'"}

can be solved by multiplying H y=rel 70l 5 from left by R, QF:
-—m

ym =R;10%elroll,
-—m

In practice:

Stepwise compute GH(GH,---G'H,) and GH(GH---GHe1llroll»)
In Arnoldi step, update H;1 with new column; then carry out
previous Givens rotations on new column.

Compute new Givens rotation and update H; and right hand side (of
small least squares problem): GH(G,---G¥e1llro Il )

09/04/07 / 2:15 AM




30-31

GMRES

The least squares system now looks like R Yi= Qﬁlel 7o |l 7.

We may assume Bi has no zeros on diagonal (see later)

Since bottom row of R, is zero we can only solve for
(O e1llroll2) 1. i (first i coeffls)

This is exactly what we do by solving R;y; = QHel lroll >
4

Note LS residual norm equals the norm of the actual residual:
I7i 112 = 1g2 eqlllro Il 2 Gis1 since it changes with i):

Iro ~AVuylls = [Viwaerliro Iy = Vi, y| = [lerIro I -H, ]|,

This way we can monitor convergence without actually computing
updates to solution and residual (cheap).

GMRES

GMRES: Ax =b
CHOOSE X0 (E.G.x0 = 0) AND fol

ro=b—Axo; k=0; vi =ro/llroll2;
wHILE [lre |5 > tol

k=k+1;

Vien =Avi;

FOR j = 1:k,

ik =vIVia; Vit = Vit — hjxvis

END

hiik = Wk 125 Vit = Vit /hiiags

UPDATE QR-DECOMP.: Hy = Qk+1R f

Irill2 =1 enlliroll 2
END

=R'Q%erllroll 35 xi =x0 + Viys;
yie= R Q etllrolla; xic=xo + Viyi

rk=ro—VieH yk = Vk+1[l— QkaH]ﬁ lroll; (ot simply ri = b —Axk)

09/04/07 / 2:15 AM
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GMRES

So we have generated the Krylov subspace (step 1), and we have
an orthogonal basis for it (step 2, more or less). However, we do not

have an orthogonal basis for K" (A4, Ar¢) = range(C,). (why not?)
Step 3 1s the orthogonal projection of the residual on

K™ (A,Aro) = range(C,,) and computing the update to the
approximate solution from K" (A, rp) = range(U,).

Obviously we don’t want to orthogonalize K (A4, Aro) in addition.

QR-decomposition H = Husim = QSiWS (m Givens rotations),

where R is upper triangular and has last row entirely zero.

We can drop last row of R and last column of Q ;+1 giving:

01/29/03 / 0:11 AM ©2002 Eric de Sturler
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GMRES

Using this QR-decomposition we have a QR-decomp. of AV

AV = Vi Hpy = T\Sim u%
where ;410  1s unitary and R,,, is uppertriangular

So for the cost of m Givens rotations we get the orthogonal basis for
K™ (A, ro) implicitly, since range(AV ) = K"™(A, Aro).

New residual and approximate solution:

mN Aﬂ\§+Hm VA~\§+HQ vmuw.o =ro - ﬂ\§+~m§m~“ﬂ\m+H\© —
ro- Vim1Q %S%N.\:Hmmﬁ 7ol (note vi =ro/llroll5.)
ro - ﬁ\simagmﬁmmﬁ lroll,

and x,, =xo +\_-H¢§ - ro) =x0 + ﬁ\S%w\mmmmH lroll >
-—m

01/29/03 / 0:11 AM ©2002 Eric de Sturler
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GMRES

Comparing with GCR, we see that apart from possibly scaling each
column with a unit scalar:

Cm = «\Sims and Up, = ViR, (note the relation AU, = Chy)

The solution to the least squares problem ( in GCR) 1s given by

@Ea\wmiwo H QES __; __N
-—m -—m

Note that RO is the left inverse of Hp,.
—m

So, multiplying an equation Hyy ~ f from the left by R;!Q will give
—m

the least squares solution: y = R;}Of
—m

01/29/03 / 0:11 AM ©2002 Eric de Sturler
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Minimum Residual Solutions: GMRES
GMRES: Az =b

Choose z,, tolerance ¢; set no=>b—Ax; v = 7“0/"7'0"2, k=0.
while || T, ||12 e do

k=k+1
Uy = Aug;
for j=1...k,
h;i.k =V Y T Y% T h‘y‘kvj;
end
hlv+1,ls: = ||Uk+1||2; Vi1 = k+1/hk+1.k:;
Solve LS minc n, ||7”U||2 —H,C ) ( = ||’r’k ||2) by construction

(actuaﬂy we update the solution rather than solve from scratch — see 1ater)

end
r, =z, + V(i

=T Vk+1ﬂk'§k = Vkﬂ (771 "7& || - Ek'gk ) orsimply T}, = b— Az,

37
* JEE
Convergence Restarted GCR
Test problem on unit square: 202 x 202 grid points
Interior: —V- (Vu) =0 Boundary v =1 forz =0and y =1
u=20 elsewhere
Residual Norm vs Number of Iterations
2
0
oe b,
-4.
-6}
full GCR
-8.
-10
0 3
Iteration count x 10° 38
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* A
Convergence restarted GMRES

Test problem on unit square: 202 x 202 grid points

Interior: -V- (Vu) =0

log, ],
0

Boundary v =1 forz=0andy=1

log, 1],

—— GMRES(100)

-10

-12

——full GMRES
—— GMRES(50)
—— GMRES(20)
—— GMRES(10)
—— GMRES(5)

0 05 1 15 2

Iteration count

25 3
x 10°

uw=0 elsewhere

A

—— GMRES(100)
—— full GMRES
—— GMRES(50) ]
—— GMRES(20)
—— GMRES(10) |
—— GMRES(5)

—_

\\ﬁ

500 1000 1500 2000 2500 3000

Iteration count

39
* A
GMRES vs GCR
GMRES(m) 200 x 200 unknowns
time (s) |iterations|logl0(l Irl|/I1bll)
full 72.888 587 -10
100 40.256 1851 -10
50 41.087 3043 -10
20 63.604 6985 -10
10 111.26 13761 -10
5 199.42 27451 -10
rGCR(m) 200 x 200 unknowns
time (s) |iterations|logl0(lIrl|/11bll)
full 215.87 587 -10
100 114.04 1851 -10
50 97.89 3043 -10
20 103.56 6985 -10
10 131.69 13761 -10
5 180.88 27451 -10
40
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Iterative Methods and
Multigrid

4. Optimal Krylov Subspace Methods
with short recurrences

! ©2002 Eric de Sturler 01/29/03 / 9:09 AM



MINRES (1)

Consider again how GMRES builds an orthogonal basis for K™*1(A, ro):

vi =ro/llroll 2 Verity that the (Arnoldi) algorithm
fork=1:m, generates the following recurrence:
Vit1 = Avi;
forj=1:k, AV =VmnaHpam.
hjr = Smmwiw
Vil = Vit - Rjpvi; What does Hp+1,m look like?
end
hri1x = | Prst |l o Prove Vp+1 1s orthogonal.
Viet1 = Vier1/ R,k
end Note Hp+1.m = VE AV,

range(Vn) = K™(A, ro) and range(Vma) = K™ (A, ro). So both
range(Up,) and range(C,,) from GCR contained in range(Vm+1).

01/29/03 / 9:09 AM ©2002 Eric de mwﬁu._mu.



MINRES (2)

Now consider A being Hermitian: A=A

Another way to write the recurrence relation from Arnoldt:
AV =VmuH =VnHn+ Ve Rm+m,

where Hp, 1s the upper m X m part of Hy,.

So, VEAV y = VEVuHp +Vivuaelhmam = Hn.
(VEAV) = VHARY,, = VEAV,, since A = A, and so
H;; must be Hermitian as well.

This has some important consequences ...

01/29/03 / 9:09 AM

©2002 Eric de Sturler



MINRES (3)

A Hermitian upper Hessenberg matrix is tridiagonal!

This means that (in exact arithmetic) we need to orthogonalize each
new vector Ay; only against the vectors v;.1 and v;.

We could solve the least squares problem in the same way as for

GMRES, except that we save on orthogonalizations (inner products
and vector updates).

What 1s the computational cost of m iterations of GMRES?

Theorem: Let A be Hermitian and let vy, v2, ..., v be the vectors
generated by the Arnoldi algotithm (so they span K™(A,v1)). Then
Avilvy, v2, ..., vi2and so Av;L span{vy,va, ..., vi2 |

Proof:

01/29/03 / 9:09 AM
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MINRES (4)

Proof:

Consider vi'Av; =vi'AHy; = vl A;.
Since vieK’(A,v1), we have Av;eK'*1(A, v)).
We know v;Lspan{vy,...,vi1} = K" (A, v1);

soifj+1<i- 1< j<i- 2 thenv;lAv;and vi!Av; = 0.

01/29/03 / 9:09 AM
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MINRES (5)

The algorithm now proceeds as follows:
Lanczos recurrence: AV = Vpa T . (T for tridiagonal).

Lanczos is Arnoldi in the Hermitian case (2 orthogonalizations).
Solve y,, = arg minllro - AVyy |l ,just as in GMRES:

We have AV, = Vi HS — a\w:im Rm,
—m
and we compute yp, = R;1OQRVH 1o (solving least squares problem).

Every step we update the QR-decomposition of T; and solve
Riyi = 0%e1llroll .
— 1

Atend we update x;, =x0+ Viymandrym =ro- V1Y m

Note that each step we only orthogonalize on previous 2 vectors.
What would seem an obvious improvement. Can we do that here?
DU A ©2002 Eric de Sturler



MINRES (6)

Since we only orthogonalize on the previous two vectors, we would
like to discard the other vectors.

However, we need them for the update at the end.
Can we update every step and discard the vectors v;?

The problem i1s that R,, changes and hence y,, changes (in general)
completely. So we need all previous ;.

We need a trick.

01/29/03 / 9:09 AM ©2002 Eric de mwﬂu._ﬁ.



MINRES (7)

A cunning plan:

Since y, changes completely every step, apply a change of variables
Alternative for update Vi ym:

Take Wy = VR, and $m = Rmym = RuR;! Qferllro ;= Qlerliro I

Then Wnym = Vimym and each iteration only the last component of
¥m changes. So we can update Wpyn, without keeping all w;.

R, from the Givens QR decomposition of a tridiagonal matrix is
uppertriangular with 2 upper diagonals.

Wm columns are found by solving W, R, =V, each iteration.
So looking at the last (=the new) column we have:

Wml'mm T Wm-1"m-1m Y Wm-2m-2m = Vms OBJ\ Wm not known:
— -1
Wm — 3550\.5 - Wm-1Im-1,m - Wm-2I'm- PSv

01/29/03 / 9:09 AM
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MINRES (9)

G@mmﬁm solution: x,;, =x¢ + ﬁ\:&\\: =X0 t+ E\vas

Since y,, , contrary to y,;, changes only in its last position we can do
the update iteration-wise:

m-1
= WiVim +S\§v\§u§ =Xm-17T WY m,m

m

Xm =X0+ 2 WiYim =Xo +
=

How many vectors do we need to keep (independent of # iterations)?

Do we need r,,, to continue the iteration?

What would be an update formula for r,?

01/29/03 / 9:09 AM ©2002 Eric de mwﬂu._mw
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MINRES (10)

MINRES: Ax =b

CHOOSE Xg — rog = b - AxoAND tol, ser k =0;

vi =ro/llroll,

wHILE |1k || > tol po
k=k+1;
Vil =AVk - tkiVk - tk-1xVk-1; (Ignore indices less than zero)
tierk = Vet 2 Vs = Pren/te1 s

UprpATE QR: Qi1 = QkGi; Rk = QWAQwH»VW
.9&« — QWQH __ﬂo __ 2
— Ok> Rk, Yk mmwﬁ lro Il 5;

— -1 .
Wik =T (Vk = Wk-1Tk- 1,k = Wk-2Tk-2,k);

Xk =Xk-1 Y WiVkk
END

01/29/03 / 9:09 AM ©2002 Eric de mwﬁa_mu.



Conjugate Gradients (1)

Hermitian matrices: Error minimization in the A-norm

We ate solving Ax = b with initial guess xg - ro = b — Axo and
X is the solution to Ax = b.

The error at iterationi is & =X — (X0 +2i),

where z;eK*(A, r¢) is the i#h update to the initial guess.

Theorem:

Let A be Hermitian, then the vector z; € K'(A, ro) satisfies

zi =arg min{ X — (xo +2)ll 4 : 2 € K(A,r0)}iff ri =ro—Azi
satisfies ri L K'(A,ro).

The most important algorithm of this class is the Conjugate Gradient
Algorithm.

Conjugate Gradients (2)

Proof:

zi =arg min{ [l — (xo +2) 4 : 2eK'(A,r0)} <

(X —x0)—2ziLaK'(A,r0)

We know K'(A,ro) = span{ro,ri, ...,ri-1}.

This gives rgla(—x0—zi) fork=0,...,i-1 <
(AR -x0-zi),ri) fork=0,...,i-1 <
(b-Axo—-Azi,rk)fork=0,...,i—-1 <o
(ro—Azi,ri)fork=0,...,i—-1 o
(riri) fork=0,..,i-1 <

riJ_Ki(A, ro)

09/04/07 / 2:08 AM




Conjugate Gradients (3)

So we can minimize the error by choosing the update such that the
new residual is orthogonal to all previous residuals. Hence, the name
orthogonal residual methods.

(note the comparison between Orthomin(1) and Steepest Descent)

We can generate an orthogonal basis for the Krylov subspace using
the Lanczos iteration, the 3-term recurrence version of the

Arnoldi-iteration.

Conjugate Gradients (4)

Lanczos iteration:

CHOOSE q1; fo = 0; go = 0;

ForRI=1,2,... DO
gir1 = Aqi;
ai =(Aqi,qi); Gin = Gin — 0iqi; Gi1 = Giv1 — Pic1qi-1;
Bi=l1gis1 l2; qis1 = Giva/Bis

END

Show (i1 = Gis1 — fi-1qi-1 sets §is11qi-1. (one argument is the
symmetry of the Hessenberg matrix for Arnoldi, give another)

This algorithm generates the recurrence relation:
a1 f1 0 -+
p1az 2

AQi=QiT;+fiqinie, where Qi =lq1 q2 - qi], Ti = 0 5

09/04/07 / 2:08 AM




Conjugate Gradients (5)

Use Lanczos orthonormal basis for minimizing A-norm of error.
zi =arg min{[|X - (xo +2)ll 4 : zeK'(A,r0)}
it ri =ro—Agz; satisties r; L K'(A, ro).

g1 =rolllroll 3
Lanczos method:AQ; = Q; T + fiqiniel

Solve ro —AQiyil Qi < Q,H(||r0 l,g1 —AQiyi) =0 =
O (llroll g1 —AQiyi) =0 = llroll;e1 — Q' AQiyi =0

Notice range(Q;) = span{ro,ri, ...,ri-1}.
AQ; = QiTi + piginiel = QHAQ;=T;

So we reduced our problem to solving ||rg [|,e1 — Tiy; = 0:

yi=T:leilrol,

Conjugate Gradients (6)

In order to update step-by-step we use same trick as in MINRES:

Let T; = L;D;L¥; then y; = L7D:'L: e lIro || 5, where L; is unit
lower bi-diagonal with lower diagonal coetts, I1,12, ...,l;i» (index
gives the column)

Change of variables: P; = Q;L;® and y; = D;'L;te1llroll : Qiyi = Pipi

Each iteration only the last component of y; changes. From

P,'Lfl = (Q; we get a recurrence for p;: pi+1li-ipi-1 =qi (p1 =q1)
So every new step we compute a new ¢;.1, we update the
decomposition of T; and from that y;;1 and pj1.

Xi =Xi-1+DpiYii

ri=ric1 —Apiyii = qir1fiyii (where y;; is izh comp of vector ;)

09/04/07 / 2:08 AM




Conjugate Gradients (7)

This leads to the coupled two-term recurrence form of CG

CG algorithm: Ax = b
CHOOSE X9 — ro =b —Axq;
p1=ro;i=0

wHILE |7 ||, > tol Do
i=i+1;
(ricgriog) .
Wi-1,Api1)°
Xi =Xi+aipi,
ri =ri-1— aiApi;
Bi= (riri) .
P (ririon)?
pi=ri—pPipia;
END

ai =

Conjugate Gradients

0 20 40 60 80 100 120 140

# iterations (matvecs)
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