IIVirginiaTech

Fixed-Point Iterations, Krylov Spaces, and Krylov Methods

Fixed-Point Iterations

Solve nonsingular linear system: $A x=b \quad$ (solution $\hat{x}=A^{-1} b$)
Solve an approximate, but simpler system: $M x_{0}=b \quad \rightarrow \quad x_{0}=M^{-1} b$
Improve the solution using the residual: $r_{0}=b-A x_{0} \quad$ (iterative refinement)
Error, $e_{0}=\hat{x}-x_{0}$, satisfies $A e_{0}=b-A x_{0}=r_{0}$
Don't compute exact error, instead solve $M z_{0}=r_{0}$ and set $x_{1}=x_{0}+z_{0}$
Iterate:

$$
\begin{array}{lc}
r_{k}=b-A x_{k} & =b-A\left(x_{k-1}+z_{k-1}\right)=r_{k-1}-A z_{k-1} \\
z_{k}=M^{-1} r_{k} & \text { (solve } \left.M z_{k}=r_{k}\right) \\
x_{k+1}=x_{k}+z_{k} &
\end{array}
$$

Methods: Jacobi iteration (diagonal), Gauss-Seidel (upper triangular), many others such as (S)SOR, ...

Fixed-Point Iterations

Convergence of such iterations?
Let $A=M-N$ (matrix splitting).
Then $M z_{k}=b-A x_{k} \Leftrightarrow M z_{k}=b-M x_{k}+N x_{k} \Leftrightarrow M x_{k+1}=N x_{k}+b$
(fixed-point iteration $x_{k+1}=M^{-1} N x_{k}+M^{-1} b$)
Note that the fixed-point is the solution (proof?)
Error:

$$
\begin{aligned}
e_{k} & =\hat{x}-x_{k}=M^{-1} N \hat{x}+M^{-1} b-M^{-1} N x_{k-1}-M^{-1} b \\
& =M^{-1} N\left(\hat{x}-x_{k-1}\right)=M^{-1} N e_{k-1} \\
& =\left(M^{-1} N\right)^{k} e_{0}
\end{aligned}
$$

Residual: $r_{k}=\left(N M^{-1}\right)^{k} r_{0}$ and $M^{-1} r_{k}=\left(M^{-1} N\right)^{k}\left(M^{-1} r_{0}\right) \quad$ (proof?)
To analyze convergence we need to introduce/review a number of concepts

Rate of Convergence
Let \hat{x} be the solution of $A x=b$, and we have iterates $x_{0}, x_{1}, x_{2}, \ldots$
$\left\{x_{k}\right\}$ converges ($\left.\mathrm{q}-\right)$ linearly to \hat{x} if there are $N \geq 0$ and $c \in[0,1)$ such that for $k \geq N:\left\|x_{k+1}-\hat{x}\right\| \leq c\left\|x_{k}-\hat{x}\right\|$,
$\left\{x_{k}\right\}$ converges (q -)superlinearly to \hat{x} if there are $N \geq 0$ and a sequence $\left\{c_{k}\right\}$ that converges to 0 such that for $k \geq N:\left\|x_{k+1}-\hat{x}\right\| \leq c_{k}\left\|x_{k}-\hat{x}\right\|$
$\left\{x_{k}\right\}$ converges to \hat{x} with (q -) order at least p if there are $p>1, c \geq 0$, and $N \geq 0$ such that $k \geq N:\left\|x_{k+1}-\hat{x}\right\| \leq c\left\|x_{k}-\hat{x}\right\|^{p}$ (quadratic if $p=2$, cubic if $p=3$, and so on)
$\left\{x_{k}\right\}$ converges to \hat{x} with j -step (q -)order at least p if there are a fixed integer $j \geq 1, p>1, c \geq 0$, and $N \geq 0$, such that $k \geq N:\left\|x_{k+j}-\hat{x}\right\| \leq c\left\|x_{k}-\hat{x}\right\|^{p}$

Norms

A norm on a vector space V is any function $f: V \rightarrow \mathbb{R}$ such that

1. $f(x) \geq 0 \quad$ and $\quad f(x)=0 \Leftrightarrow x=0$,
2. $f(\alpha x)=|\alpha| f(x)$,
3. $f(x+y) \leq f(x)+f(y)$,
where $x \in V$ and $\alpha \in \mathbb{R}$.
Important vector spaces in this course: $\mathbb{R}^{n}, \mathbb{C}^{n}$, and $\mathbb{R}^{m \times n}, \mathbb{C}^{m \times n}$ (matrices). Note that the set of all m-by-n matrices (real or complex) is a vector space.

Many matrix norms possess the submultiplicative or consistency property: $f(A B) \leq f(A) f(B)$ for all $A \in \mathbb{C}^{m \times k}$ and $B \in \mathbb{C}^{k \times n}$ (or real matrices).

Note that strictly speaking this is a property of a family of norms, because in general 'each' f is defined on a different vector space.

Norms

We can define a matrix norm using a vector norm (an induced matrix norm):

$$
\|A\|_{\alpha}=\max _{x \neq 0} \frac{\|A x\|_{\alpha}}{\|x\|_{\alpha}}=\max _{\| \| \|_{\alpha}=1}\|A x\|_{\alpha}
$$

Induced norms are always consistent (satisfy consistency property).
Two norms \|. $\|_{\alpha}$ and $\|.\|_{\beta}$ are equivalent if there exist positive, real constants a and b such that

$$
\forall x: a\|x\|_{\alpha} \leq\|x\|_{\beta} \leq b\|x\|_{\alpha}
$$

The constants depend on the two norms but not on x.
All norms on a finite dimensional vector space are equivalent.

Norms

Some useful norms on $\mathbb{R}^{n}, \mathbb{C}^{n}, \mathbb{R}^{m \times n}, \mathbb{C}^{m \times n}$:
p-norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$, especially $p=1,2, \infty$, where $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.
Induced matrix p-norms are:
$\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right| \quad$ (max absolute column sum)
$\|A\|_{2}=\sigma_{\max }(A) \quad$ (max singular value - harder to compute than others)
$\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \quad$ (max absolute row sum)
Matrix Frobenius norm:
$\|A\|_{F}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \quad$ (similar to vector 2-norm for a matrix)
All these norms are consistent (satisfy the submultiplicative property)

Eigenvalues and Eigenvectors

Let $A x=\lambda x$ and $\breve{y} A=\lambda \breve{y}$ (for same λ).
We call the column vector x a (right) eigenvector, the row vector \breve{y} a left eigenvector, and λ an eigenvalue, the triple together is called an eigentriple, and (λ, x) and (λ, \breve{y}) a (right) eigenpair or left eigenpair.

The set of all eigenvalues of $A, \Lambda(A)$, is called the spectrum of A.
If the matrix A is diagonalizable (has a complete set of eigenvectors) we have

$$
A=V \Lambda V^{-1} \Leftrightarrow A V=V \Lambda,
$$

where V is a matrix with the right eigenvectors as columns and Λ is a diagonal matrix with the eigenvalues as coefficients.

A similar decomposition can be given for the left eigenvectors.

Spectral Radius

The spectral radius $\rho(A)$ is defined as $\rho(A)=\max \{|\lambda|: \lambda \in \Lambda(A)\}$.
Theorem:
For all A and $\varepsilon>0$ a consistent norm $\|\cdot\|_{\alpha}$ exists such that $\|A\|_{\alpha} \leq \rho(A)+\varepsilon$.
So, if $\rho(A)<1$, then a consistent norm $\|\cdot\|_{\alpha}$ exists such that $\|A\|_{\alpha}<1$.
Take $\varepsilon=1 / 2(1-\rho(A))$ and apply theorem above.
Define $A^{*}=\overline{A^{T}}$ (complex conjugate transpose).
If A is $\operatorname{Hermitian}\left(A=A^{*}\right)$, then $\rho(A)=\|A\|_{2}$.
If A is normal $\left(A A^{*}=A^{*} A\right)$, then $\rho(A)=\|A\|_{2}$.

Fixed-Point Iterations

Under what conditions does $e_{k} \rightarrow 0$ and $x_{k} \rightarrow \hat{x}$ (convergence) for arbitrary e_{0} ?
Theorem: $e_{k}=\left(M^{-1} N\right)^{k} e_{0} \rightarrow 0$ for arbitrary e_{0} iff $\left(M^{-1} N\right)^{k} \rightarrow 0$.
Proof:
Let $G=M^{-1} N$ and the matrix norm \|. \| be induced by a vector norm.

1. Assume $G^{k} \rightarrow 0$

Then $G^{k} \rightarrow 0 \Rightarrow\left\|G^{k}\right\| \rightarrow 0$ and $\left\|G^{k} e_{0}\right\| \leq\left\|G^{k}\right\|\left\|e_{0}\right\| \rightarrow 0$ for any e_{0}.
2. Assume $G^{k} e_{0} \rightarrow 0$ for all e_{0}.

Consider the identity matrix $I=\left[\eta_{1} \eta_{2} \cdots \eta_{n}\right]$.
$G^{k} I=\left[G^{k} \eta_{1} G^{k} \eta_{2} \cdots G^{k} \eta_{n}\right] \rightarrow[00 \cdots 0]$; so $G^{k} \rightarrow 0$ since $G^{k} I=G^{k}$.
Alternatively, consider $\left\|\left[G^{k} \eta_{1} G^{k} \eta_{2} \cdots G^{k} \eta_{n}\right]\right\|_{1}\left(\right.$ note that $\left.G^{k} \eta_{i} \rightarrow 0\right)$

Norms

Note that we can generalize the result for the one-norm to all norms by using the equivalence of norms on finite dimensional vector spaces.

Similarly, the results are readily generalized for inconsistent matrix norms (with || $A B\|>\| A\|\|\|\|$ |possible), by using the equivalence of norms on finite dimensional spaces.

Fixed-Point Iterations

Theorem: $G^{k} \rightarrow 0$ iff $\rho(G)<1$.
Proof:

1. $G^{k} \rightarrow 0 \Rightarrow \rho(G)<1$.

For each eigenvalue λ of G there exists at least one eigenvector v s.t. $G v=\lambda v$.
Then $\left\|G^{k} v\right\|=\left\|\lambda^{k} v\right\|=|\lambda|^{k}\|v\|$ and $G^{k} v \rightarrow 0$. So, $|\lambda|^{k}\|v\| \rightarrow 0 \Rightarrow|\lambda|<1$.
Since this holds for each eigenvalue, $\rho(G)<1$ must hold.
2. $\rho(G)<1 \Rightarrow G^{k} \rightarrow 0$.

There exists a consistent norm $\|.\|_{\alpha}$ s.t. $\|G\|_{\alpha}<1$.
Hence, $\left\|G^{k}\right\|_{\alpha} \leq\|G\|_{\alpha}^{k} \rightarrow 0$. Therefore $\left\|G^{k}\right\|_{\alpha} \rightarrow 0 \Rightarrow G^{k} \rightarrow 0$.
So $e_{k} \rightarrow 0\left(x_{k} \rightarrow \hat{x}\right)$ for arbitrary e_{0} iff $\rho\left(M^{-1} N\right)<1$.

Krylov Spaces

Given x_{0}, set $r_{0}=b-A x_{0}$.
For $k=0,1,2, \ldots$
$z_{k}=M^{-1} r_{k}$,
$x_{k+1}=x_{k}+z_{k}$,
$r_{k+1}=b-A x_{k+1}=r_{k}-A z_{k}$.
Note that $x_{k+1}-x_{k}=z_{k}=M^{-1} r_{k}$ and hence $x_{k+1}-x_{0}=z_{0}+z_{1}+\cdots+z_{k}$.
This implies $x_{k+1}-x_{0}=M^{-1} r_{0}+\left(M^{-1} N\right) M^{-1} r_{0}+\cdots+\left(M^{-1} N\right)^{k} M^{-1} r_{0}$.
So, correction $x_{k+1}-x_{0}$ is given by polynomial $S_{k}(t)=1+t+t^{2}+\cdots+t^{k}$:

$$
x_{k+1}-x_{0}=\sum_{i=0}^{k}\left(M^{-1} N\right)^{i} M^{-1} r_{0}=S_{k}\left(M^{-1} N\right) \cdot M^{-1} r_{0} .
$$

Note also $e_{k}=\left(M^{-1} N\right)^{k} e_{0}$ and $r_{k}=\left(N M^{-1}\right)^{k} r_{0}=M\left(M^{-1} N\right)^{k} M^{-1} r_{0}$.

Similarity Transformation

Let A have eigenpairs $\left(\lambda_{i}, v_{i}\right): A v_{i}=\lambda_{i} v_{i}$
Define the similarity transformation: $B A B^{-1}$
The matrix $B A B^{-1}$ has the same eigenvalues, λ_{i}, as A and eigenvectors $B v_{i}$:

$$
B A B^{-1}\left(B v_{i}\right)=B A v_{i}=\lambda_{i} B v_{i}
$$

Show that $\left(M^{-1} N\right)^{k}$ has the same eigenvalues as $\left(N M^{-1}\right)^{k}$.

Polynomials and Spaces

Main computational cost is in the multiplication by A and solving for M.
So, we can try to generate better polynomials (faster convergence) at same cost.
Also correction $x_{k+1}-x_{0} \in \operatorname{span}\left\{M^{-1} r_{0},\left(M^{-1} N\right) M^{-1} r_{0}, \ldots,\left(M^{-1} N\right)^{k} M^{-1} r_{0}\right\}$
We call a space $K_{m}(B, y) \equiv \operatorname{span}\left\{y, B y, B^{2} y, \ldots, B^{m-1} y\right\}$
the Krylov (sub)space of dimension m associated with B and y.
So, $x_{m}-x_{0} \in K_{m}\left(M^{-1} N, M^{-1} r_{0}\right)$
$e_{m}=\left(M^{-1} N\right)^{m} e_{0} \in K_{m+1}\left(M^{-1} N, e_{0}\right)$ and
$M^{-1} r_{m}=\left(M^{-1} N\right)^{m} M^{-1} r_{0} \in K_{m+1}\left(M^{-1} N, M^{-1} r_{0}\right)$.
Therefore, alternatively we can compute better approximate solutions from the same space (faster convergence) at same cost.

Krylov Spaces

So, a Krylov space is a space of polynomials in a matrix times a vector.
These spaces inherit the many important approximation properties that polynomials on the real line or in the complex plane possess.

For simplicity let the matrix B be diagonalizable, $B=V \Lambda V^{-1}$.
Then $B^{2}=V \Lambda V^{-1} V A V^{-1}=V \Lambda^{2} V^{-1}$ and generally $B^{k}=V \Lambda^{k} V^{-1}$.
So, the polynomial $p_{m}(t)=\alpha_{0}+\alpha_{1} t+\cdots+\alpha_{m} t^{m}$ applied to B gives

$$
\begin{aligned}
& p_{m}(B)=V\left(\alpha_{0} I+\alpha_{1} \Lambda+\alpha_{2} \Lambda^{2}+\cdots+\alpha_{m} \Lambda^{m}\right) V^{-1} \quad \text { and hence } \\
& p_{m}(B)=V p_{m}(\Lambda) V^{-1}=V \operatorname{diag}\left(p_{m}\left(\lambda_{1}\right), \ldots, p_{m}\left(\lambda_{n}\right)\right) V^{-1}
\end{aligned}
$$

So, the polynomial is applied to the eigenvalues individually.
This allows us to approximate solutions to linear systems, eigenvalue problems, and more general problems using polynomial approximation.

Approximation by Matrix Polynomials

Let $B=V \Lambda V^{-1}$, let $\Lambda(B) \subset \Omega \subset \mathbb{C}$.

If $p_{m}(t) \approx \frac{1}{t}$ for all $t \in \Omega$, then $p_{m}(B) \approx B^{-1}$.
Let $y=V \zeta$. Then $p_{m}(B) y=\sum_{i} v_{i} p_{m}\left(\lambda_{i}\right) \zeta_{i} \approx \sum_{i} v_{i} \frac{\zeta_{i}}{\lambda_{i}}=B^{-1} y$
Furthermore, let $\varepsilon \approx 0$ and $\left|\lambda_{i}-\lambda_{j}\right|>\delta$ (for some eigenvalue λ_{i})
If $p_{m}(t)= \begin{cases}\varepsilon, & t \in \Omega \text { and }\left|t-\lambda_{i}\right|>\delta, \\ 1, & t=\lambda_{i},\end{cases}$
then $p_{m}(B) y \approx v_{i} \zeta_{i}$.
If we can construct such polynomials for modest m we have an efficient linear solver or eigensolver.

Krylov Spaces

We have $M^{-1} N=M^{-1}(M-A)=I-M^{-1} A$.
So, $\quad x_{k+1}-x_{k}=\left(I-M^{-1} A\right)^{k} M^{-1} r_{0} \in K_{k+1}\left(M^{-1} A, M^{-1} r_{0}\right)$, and

$$
x_{k+1}=M^{-1} N x_{k}+M^{-1} b,
$$

with fixed-point $\hat{x}=\left(I-M^{-1} A\right) \hat{x}+M^{-1} b \Leftrightarrow M^{-1} A \hat{x}=M^{-1} b$.
So, we solve the preconditioned problem $M^{-1} A x=M^{-1} b$.
Preconditioning aims to improve the convergence of Richardson's iteration

$$
x_{k+1}=(I-A) x_{k}+b
$$

However, with $\tilde{A}=M^{-1} A, \tilde{M}=I$, and $\tilde{b}=M^{-1} b$ our iteration becomes Richardson's iteration, and we have Krylov spaces and polynomials based on \tilde{A}.

Hence, for simplicity we consider A and b as an explicitly preconditioned matrix and vector, and work with Krylov spaces in A and r_{0} (most of the time).

Approximations from Krylov Spaces

Richardson for $A x=b$ seeks update $z_{m} \in K_{m}\left(I-A, r_{0}\right)=K_{m}\left(A, r_{0}\right)$
How to define an iteration that finds better approximation in same space?
Given x_{0} and $r_{0}=b-A x_{0}$ find $z_{m} \in K_{m}\left(A, r_{0}\right)$ and set $x_{m}=x_{0}+z_{m}$.
There are several possibilities. Two particularly important ones are

1. Find $z_{m} \in K_{m}\left(A, r_{0}\right)$ such that $\left\|r_{m}\right\|=\left\|r_{0}-A z_{m}\right\|$ is minimal.
2. Find $z_{m} \in K_{m}\left(A, r_{0}\right)$ such that $\left\|e_{m}\right\|=\left\|\hat{x}-\left(x_{0}+z_{m}\right)\right\|$ is minimal.

The second one seems hard, but is possible in practice for special norms.
Further possibilities for optimal solutions exist, and for non-Hermitian matrices certain non-optimal solutions turn out to have advantages as well.

Inner Products

Many methods to select z_{m} from the Krylov space are related to projections.

We call $f: S \times S \rightarrow \mathbb{R}$ an inner product over the real vector space S, if for all vectors x, y, z and scalars α,

1. $f(x, x) \geq 0$ and $f(x, x)=0 \Leftrightarrow x=0$
2. $f(\alpha x, z)=\alpha f(x, z)$
3. $f(x+y, z)=f(x, z)+f(y, z)$
4. $f(x, z)=f(z, x)$

For a complex inner product, $f: S \times S \rightarrow \mathbb{C}$, over a complex vector space S we have instead of property $(4): f(x, z)=\overline{f(z, x)}$.

Inner products are often written as $\langle x, y\rangle,(x, y)$, or $\langle x, y\rangle_{\alpha}$, etc..
We say x and y are orthogonal (w.r.t α-IP), $x \perp_{\alpha} y$ if $\langle x, y\rangle_{\alpha}=0$.

Inner products and Norms

Each inner product defines, or induces, a norm: $\|x\|=\sqrt{\langle x, x\rangle}$. (proof?)
Many norms are induced by inner products, but not all. Those norms that are have additional nice properties (that we'll discuss soon).
An inner product and its induced norm satisfy: $|\langle x, y\rangle| \leq\|x\|\|y\| \quad$ (CS ineq)
A norm induced by an inner product satisfies the parallelogram equality:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

In this case we can find the inner product from the norm as well:
Real case: $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$
Complex case:

$$
\operatorname{Re}\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right), \quad \operatorname{Im}\langle x, y\rangle=\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)
$$

Minimum Residual Solutions

First, we consider minimizing the 2 -norm of the residual:
Find $z_{m} \in K_{m}\left(A, r_{0}\right)$ such that $\left\|r_{m}\right\|_{2}=\left\|r_{0}-A z_{m}\right\|_{2}$ is minimal.
The vector 2-norm is induced by the Euclidean inner product $y^{*} x=\sum_{i=1}^{n} \bar{y}_{i} x_{i}$.
It makes sense to minimize the residual, because the error is in general unknown, and we can only directly minimize special norms of the error (those that don't require the error (\odot). Moreover, $\left\|e_{m}\right\|_{2}=\left\|A^{-1} r_{m}\right\|_{2} \leq\left\|A^{-1}\right\|_{2}\left\|r_{m}\right\|_{2}$, so the norm of the error is bounded by a constant times the norm of the residual.

Finally, note that $\left\|r_{m}\right\|_{2}=\left\|e_{m}\right\|_{A^{*} A} \equiv\|A e\|_{2}$ (show this is a norm if A regular)
Theorem: z_{m} is the minimizer iff $r_{m}=b-A\left(x_{0}+z_{m}\right) \perp K_{m}\left(A, A r_{0}\right)$.
Note that $b-A\left(x_{0}+z_{m}\right)=r_{0}-A z_{m}$.

Minimum Residual Solutions

Proof: Let $f(z)=\left\|r_{0}-A z\right\|_{2}^{2}$.
Then $\hat{z} \in K_{m}\left(A, r_{0}\right):\left\|r_{0}-A \hat{z}\right\|_{2}^{2}$ min, implies \hat{z} is a stationary point of $f(z)$:
For any unit vector $p \in K_{m}\left(A, r_{0}\right)$ we have $\frac{\partial f(\hat{z})}{\partial p}=0$.
So, $\lim _{\varepsilon \in \mathbb{R}, \varepsilon \rightarrow 0} \frac{f(\hat{z}+\varepsilon p)-f(\hat{z})}{\varepsilon}=0$, which gives
$\lim _{\varepsilon \rightarrow 0} \frac{\left\|r_{0}-A \hat{z}-\varepsilon A p\right\|_{2}^{2}-\left\|r_{0}-A \hat{z}\right\|_{2}^{2}}{\varepsilon}=$
$\lim _{\varepsilon \rightarrow 0} \frac{-\varepsilon p^{*} A^{*}\left(r_{0}-A \hat{z}\right)-\varepsilon\left(r_{0}-A \hat{z}\right)^{*} A p+\varepsilon^{2} p^{*} A^{*} A p}{\varepsilon}=0 \quad \Leftrightarrow$
$p^{*} A^{*}\left(r_{0}-A \hat{z}\right)-\left(r_{0}-A \hat{z}\right)^{*} A p=0$ for any unit vector $p \in K_{m}\left(A, r_{0}\right)$.
So, $\left(r_{0}-A \hat{z}\right)^{*} A p=0 \Leftrightarrow\left(r_{0}-A \hat{z}\right) \perp A p$ for any unit $p \in K_{m}\left(A, r_{0}\right)$ (why?)

Since $A p \in K_{m}\left(A, A r_{0}\right)$ we have $\left(r_{0}-A \hat{z}\right) \perp K_{m}\left(A, A r_{0}\right) \equiv A K_{m}\left(A, r_{0}\right)$.

Minimum Residual Solutions

Minimizing a norm (cont. function) is in general complicated. However, the orthogonality conditions lead naturally to a linear system of equations.

Let $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ form a basis for $K_{m}\left(A, r_{0}\right)$ and $\left\{A w_{i}\right\}_{i=1}^{m}$ for $K_{m}\left(A, A r_{0}\right)$. Let $W_{m}=\left[w_{1} w_{2} \ldots w_{m}\right]$. Then $z_{m}=W_{m} \zeta$ (for some unknown ζ).

Now the orthogonality conditions $A w_{i} \perp\left(r_{0}-A W_{m} \zeta\right)$
yield the linear equations $\sum_{j=1}^{m}\left(w_{i}^{*} A^{*} A w_{j}\right) \zeta_{j}=w_{i}^{*} A^{*} r_{0}$.

In matrix form: $W_{m}^{*} A^{*} A W_{m} \zeta=W_{m}^{*} A^{*} r_{0} \quad$ normal equations (accuracy problems)
LS problem: $\min _{\zeta}\left\|r_{0}-K_{m} \zeta\right\|_{2} \quad$ where $K_{m}=A W_{m}$
More accurate to solve LS problem using QR-decomposition.
Solving for ζ requires only the solution of an $m \times m$ system independent of n.

Minimum Residual Solutions

We have seen that $\min _{\zeta}\left\|r_{0}-K_{m} \zeta\right\|_{2} \Leftrightarrow K_{m} \perp\left(r_{0}-K_{m} \zeta\right)$
Compute $K_{m}=Q_{m} R_{m}$ (QR-decomposition) where
$Q_{m} \in \mathbb{C}^{n \times m}\left(\mathbb{R}^{n \times m}\right)$ s.t. $Q_{m}^{*} Q_{m}=I_{m}$ and $R_{m} \in \mathbb{C}^{n \times m}$ uppertriangular If $\operatorname{rank}\left(K_{m}\right)=m$, then R_{m} is nonsingular and range $\left(\mathrm{Q}_{m}\right)=\operatorname{range}\left(K_{m}\right)$

Now $Q_{m} \perp\left(r_{0}-K_{m} \zeta\right)$ gives $Q_{m}^{*} r_{0}-Q_{m}^{*} Q_{m} R_{m} \zeta=0 \Leftrightarrow R_{m} \zeta=Q_{m}^{*} r_{0}$ (easy solve)
Note that $K_{m} \zeta=Q_{m} Q_{m}^{*} r_{0} \perp r_{0}-K_{m} \zeta=r_{0}-Q_{m} Q_{m}^{*} r_{0}$
$K_{m} \zeta$ is the orthogonal projection of r_{0} onto range $\left(K_{m}\right)=K_{m}\left(A, A r_{0}\right)$.
$r_{m}=r_{0}-K_{m} \zeta$ is the orthogonal projection of r_{0} onto $\left(K_{m}\left(A, A r_{0}\right)\right)^{\perp}$.
$Q_{m} Q_{m}^{*}$ and $I-Q_{m} Q_{m}^{*}$ are orthogonal projectors.
P is projector if $P^{2}=P$, orthogonal projector if $R(\mathrm{P}) \perp N(\mathrm{P}) \Leftrightarrow \mathrm{P}^{*}=P$.

Minimum Residual Solutions

Iteration-wise the problem is solved in four steps:

1. Extend the Krylov spaces $K_{m}\left(A, r_{0}\right)$ and $K_{m}\left(A, A r_{0}\right)$ by adding the respective next vectors $A^{m} r_{0}$ and $A^{m+1} r_{0}$ (only 1 matvec)
2. Update orthogonal basis for $K_{m}\left(A, A r_{0}\right)$: QR-decomp. of K_{m}
3. Update projected matrix and projection of r_{0} (orthog) onto $K_{m}\left(A, A r_{0}\right)$
4. Solve the projected problem, e.g. $R \zeta=Q_{m}^{*} r_{0}$. Note that this problem is only $m \times m$ or $(m+1) \times m$ irrespective of the size of the linear system.

These steps vary somewhat for different methods.
We would like to carry out these steps efficiently.
The GCR method (Generalized Conjugate Residuals) illustrates these steps well. (Eisenstat, Elman, and Schulz 1983)

Minimum Residual Solutions: GCR

GCR: $A x=b$
Choose x_{0} (e.g. $x_{0}=0$) and tolerance ε; set $r_{0}=b-A x_{0} ; i=0$
while $\left\|r_{i}\right\|_{2} \geq \varepsilon$ do
$i=i+1 \quad r_{i}$ adds search vector to $K_{i-1}\left(A, r_{0}\right)$
$u_{i}=r_{i-1} ; c_{i}=A u_{i} \quad A r_{i-1}$ extends $K_{i-1}\left(A, A r_{0}\right)$
for $j=1, \ldots, i-1$ do \quad (start QR decomposition)
$u_{i}=u_{i}-u_{j} c_{j}^{*} c_{i} \quad$ Orthogonalize c_{i} against previous c_{j} and
$c_{i}=c_{i}-c_{j} c_{j}^{*} c_{i} \quad$ update u_{i} such that $A u_{i}=c_{i}$ maintained
end do
$u_{i}=u_{i} /\left\|c_{i}\right\|_{2} ; c_{i}=c_{i} /\left\|c_{i}\right\|_{2} \quad$ Normalize; (end QR decomposition)
$x_{i}=x_{i-1}+u_{i} c_{i}^{*} r_{i-1} \quad$ Project new c_{i} out of residual and update
$r_{i}=r_{i-1}-c_{i} c_{i}^{*} r_{i-1} \quad$ solution accordingly; note $r_{i} \perp c_{j}$ for $j \leq i$
end do
What happens if $c_{i} \perp r_{i-1}$

Minimum Residual Solutions: GCR

From the algorithm we see that if $c_{j}^{*} r_{j-1} \neq 0$ for $j=1 \ldots i$:
$u_{1}=\nu r_{0} \in \operatorname{span}\left\{r_{0}\right\}=K_{1}\left(A, r_{0}\right), \quad \nu$ is a normalization constant
$c_{1}=\nu A r_{0} \in \operatorname{span}\left\{A r_{0}\right\} \in K_{1}\left(A, A r_{0}\right)$.
$r_{1}=r_{0}-\alpha_{1} c_{1}=r_{0}-\nu \alpha_{1} A r_{0} \in K_{2}\left(A, r_{0}\right) \quad$ also $A r_{0} \in \operatorname{span}\left\{r_{0}, r_{1}\right\}$
By induction (and the statements above) we can show
$u_{i}=r_{i-1}-\sum_{j<i} \beta_{j} u_{j} \in \operatorname{span}\left\{r_{0}, \ldots, r_{i-1}\right\}=K_{i}\left(A, r_{0}\right)$
$c_{i}=A r_{i-1}-\sum_{j<i} \beta_{j} c_{j} \in \operatorname{span}\left\{A r_{0}, \ldots, A r_{i-1}\right\}=K_{i}\left(A, A r_{0}\right)$ and also that
$c_{i}=A u_{i}, c_{i} \perp c_{1}, c_{2}, \ldots, c_{i-1}$, and $c_{i}^{*} c_{i}=1$ (last by construction)
$r_{i}=r_{i-1}-\alpha_{i} c_{i} \in \operatorname{span}\left\{r_{0}, A r_{0}, A r_{1}, \ldots, A r_{i-1}\right\}=K_{i+1}\left(A, r_{0}\right)$
These relations hold even if $\left\{r_{0}, A r_{0}, \ldots, A^{m} r_{0}\right\}$ are dependent for some m.
In that case all the spaces have a maximum dimension of $m+1$.

Minimum Residual Solutions: GCR

Theorem:
Let $c_{i}^{*} r_{i-1} \neq 0$ for $i=1,2, \ldots, m$. Then $\left\|b-A x_{m}\right\|_{2}$ for GCR is minimal.
We use our earlier theorem on the minimum residual. We have (previous slide)
$x_{m}=x_{0}+\sum_{i=1}^{m} u_{i} \beta_{i}=x_{0}+z_{m}$ and $z_{m} \in K_{m}\left(A, r_{0}\right)$ as required.

Now we only need to show that $r_{m} \perp K_{m}\left(A, A r_{0}\right)$.
Note that our assumption implies $r_{i-1} \neq 0$ for $i=1,2, \ldots, m$.
By construction we have $r_{1}=r_{0}-c_{1} c_{1}^{*} r_{0} \Rightarrow c_{1}^{*} r_{1}=c_{1}^{*} r_{0}-c_{1}^{*} c_{1} c_{1}^{*} r_{0}=0$
Assume that for $j=1 \ldots i-1$ we have $r_{j-1} \perp c_{1}, c_{2}, \ldots, c_{j-1}$ (induc. hypo.).
From $r_{j}=r_{j-1}-c_{j} c_{j}^{*} r_{j-1}$ we have $r_{j} \perp c_{j}$.
For $i<j, c_{i}^{*} r_{j}=c_{i}^{*} r_{j-1}=0$ (from orthogonality c_{i} and induction hypothesis).

This proves the required orthogonality result since the c_{i} span $K_{m}\left(A, A r_{0}\right)$.

Minimum Residual Solutions: GCR

Recapitulation of GCR after m it.s: $\left\|r_{m}\right\|_{2}=\min \left\{\left\|r_{0}-A z_{m}\right\|_{2} \mid z_{m}=U_{m} \zeta\right\}$
$u_{i} \in K_{m}\left(A, r_{0}\right), c_{i} \in K_{m}\left(A, A r_{0}\right), r_{i} \in K_{m+1}\left(A, r_{0}\right)$ for $i=1, \ldots, m \& i=0$ for r_{i}.
This implies that $K_{i+1}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, \ldots, r_{i}\right\}$ for $i=0, \ldots, m$ (if $c_{i}^{*} r_{i-1} \neq 0$).

Let $U_{m}=\left[u_{1} u_{2} \cdots u_{m}\right]$ and $C_{m}=\left[c_{1} c_{2} \cdots c_{m}\right]$
Then $A U_{m}=C_{m}, C_{m}^{*} C_{m}=I_{m}$, and range $\left(U_{m}\right)=K_{m}\left(A, r_{0}\right)$.
For GCR the projected system is the matrix for the normal equations (but computed implicitly): $U_{m}^{*} A^{*} A U_{m}=\left(A U_{m}\right)^{*}\left(A U_{m}\right)=C_{m}^{*} C_{m}=I_{m}$. The projected right hand side is $C_{m}^{*} r_{0}$, and so we have $\zeta=C_{m}^{*} r_{0}$.
$z_{m}=U_{m} \zeta$ is given by condition $C_{m}^{*}\left(r_{0}-A U_{m} \zeta\right)=0$, which gives $\zeta=C_{m}^{*} r_{0}$.
This gives $z_{m}=U_{m} C_{m}^{*} r_{0}, x_{m}=x_{0}+z_{m}$, and $r_{m}=r_{0}-C_{m} C_{m}^{*} r_{0}$.

Minimum Residual Solutions: GCR

Note that $C_{m} C_{m}^{*}$ and $I-C_{m} C_{m}^{*}$ are both orthogonal projectors.
$C_{m} C_{m}^{*}$ is a projection since $C_{m} C_{m}^{*} C_{m} C_{m}^{*}=C_{m} C_{m}^{*}$.
$C_{m} C_{m}^{*}$ is an orthogonal projection since $C_{m} C_{m}^{*}$ is Hermitian.
$I-C_{m} C_{m}^{*}$ is a projection since
$\left(I-C_{m} C_{m}^{*}\right)\left(I-C_{m} C_{m}^{*}\right)=I-C_{m} C_{m}^{*}-C_{m} C_{m}^{*}+C_{m} C_{m}^{*}=I-C_{m} C_{m}^{*}$.
$I-C_{m} C_{m}^{*}$ is an orthogonal projection since $I-C_{m} C_{m}^{*}$ is Hermitian.

Model Problems

Discretize $-\left(p u_{x}\right)_{x}-\left(q u_{y}\right)_{y}+r u_{x}+s u_{y}+t u=f$.

Integrate equality over box V. Use Gauss' divergence theorem to get
$\int_{V}\left(p u_{x}\right)_{x}+\left(q u_{y}\right)_{y} d x d y=\int_{\partial V}\binom{p u_{x}}{q u_{y}} \cdot n d s$
And approximate the line integral numerically.

Model Problems

Now we approximate the boundary integral $\int_{\partial V}\binom{p u_{x}}{q u_{y}} \cdot n d s$.

We approximate the integrals over each side of box V using the midpoint rule and we approximate the derivatives using central differences.
$\int_{B}^{C} p u_{x} n_{1} d y \approx \frac{\Delta y}{\Delta x} p_{i+1 / 2, j}\left(U_{i+1, j}-U_{i, j}\right)$ and so on for the other sides
We approximate the integrals over $r u_{x}, s u_{y}, t u$, and f using the area of the box and the value at the midpoint of the box, where we use central differences for derivatives. So, $u_{x} \approx\left(U_{i+1, j}-U_{i-1, j}\right) /(2 \Delta x)$, and so on.

For various examples we will also do this while strong convection relative to the mesh size makes central differences a poor choice (as it gives interesting systems).

Model problems

This gives the discrete equations

$$
\begin{aligned}
& -\frac{\Delta y}{\Delta x}\left[p_{i+1 / 2, j}\left(U_{i+1, j}-U_{i, j}\right)-p_{i-1 / 2, j}\left(U_{i, j}-U_{i-1, j}\right)\right] \\
& -\frac{\Delta x}{\Delta y}\left[q_{i, j+1 / 2}\left(U_{i, j+1}-U_{i, j}\right)-p_{i, j-1 / 2}\left(U_{i, j}-U_{i, j-1}\right)\right] \\
& +(\Delta y / 2) r_{i, j}\left(U_{i+1, j}-U_{i-1, j}\right)+(\Delta x / 2) s_{i, j}\left(U_{i, j+1}-U_{i, j-1}\right) \\
& +\Delta x \Delta y t_{i, j} U_{i, j}=\Delta x \Delta y f_{i, j}
\end{aligned}
$$

Often we divide this result again by $\Delta x \Delta y$.

${ }_{\omega}^{\omega}$

Minimum Residual Solutions: GMRES

An alternative is to generate iteration-wise an orthogonal basis for $K_{m+1}\left(A, r_{0}\right)$.
The Arnoldi algorithm (iteration) goes as follows:
Let $v_{1}=r_{0} /\left\|r_{0}\right\|_{2}$;
for $k=1 \ldots m$,
$\tilde{v}_{k+1}=A v_{k} ;$
for $j=1 \ldots k$,

$$
h_{j, k}=v_{j}^{*} \tilde{v}_{k+1} ; \tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{j} ;
$$

end
$h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} ; v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k} ;$
end
Note/show the following results: $A V_{m}=V_{m+1} \underline{H}_{m}$ (Arnoldi recurrence)
$V_{m+1}^{*} V_{m+1}=I_{m+1}$ (orthogonal),
$\underline{H}_{m}=V_{m+1}^{*} A V_{m}$ (upper Hessenberg)

Minimum Residual Solutions: GMRES

Using $A V_{m}=V_{m+1} \underline{H}_{m}$, we solve $\min \left\{\left\|r_{0}-A z\right\|_{2} \mid z \in K_{m}\left(A, r_{0}\right)\right\}$ as follows.
Let $z=V_{m} \zeta$, and minimize $\left\|r_{0}-A V_{m} \zeta\right\|_{2}$ over all m-vectors ζ.
Note that this is an $n \times m$ least squares problem (as before).
Now substitute $r_{0}=V_{m+1} \eta_{1}\left\|r_{0}\right\|_{2}$ and $A V_{m}=V_{m+1} \underline{H}_{m}$. This gives
$\left\|V_{m+1} \eta_{1}\right\| r_{0}\left\|_{2}-V_{m+1} \underline{H}_{m} \zeta\right\|_{2}=\left\|V_{m+1}\left(\eta_{1}\left\|r_{0}\right\|_{2}-\underline{H}_{m} \zeta\right)\right\|_{2}=\left\|\eta_{1}\right\| r_{0}\left\|_{2}-\underline{H}_{m} \zeta\right\|_{2}$
The latter is a small $(m+1) \times m$ least squares problem we can solve by standard dense linear algebra techniques (e.g. using LAPACK)

We can exploit the structure of \underline{H}_{m} and the least squares problem to

1. do this efficiently,
2. compute the residual norm without computing the residual

GMRES

By construction \underline{H}_{m} has the following structure

$$
\underline{H}_{m}=\left[\begin{array}{cccc}
h_{1,1} & h_{1,2} & h_{1,3} & \cdots \\
h_{1, m-1} & h_{1, m} \\
h_{2,1} & h_{2,2} & h_{2,3} & \\
h_{2, m-1} & h_{1, m} \\
& h_{3,2} & h_{3,3} & \vdots \\
& h_{4,3} & \ddots & h_{m-1, m-1} \\
& & h_{m-1, m} \\
& & h_{m, m-1} & h_{m, m} \\
& & & h_{m+1, m}
\end{array}\right]
$$

Cheapest QR decomp. is by Givens rotations to zero lower diagonal.

$$
G_{1}^{H} \underline{H}_{m}=\left[\begin{array}{ccc}
c_{1} & \bar{s}_{1} & \\
-s_{1} & \bar{c}_{1} & \\
& & I_{m-1}
\end{array}\right]=\left[\begin{array}{cccc}
* & * & \cdots & * \\
0 & * & \cdots & * \\
& h_{3,2} & \cdots & h_{3, m} \\
& & \ddots & \vdots
\end{array}\right]
$$

GMRES

Next step we compute:

$$
G_{2}^{H} G_{1}^{H} \underline{H}_{m}=\left[\begin{array}{llll}
1 & & & \\
& c_{2} & \bar{s}_{2} \\
& -s_{2} & \bar{c}_{2} & \\
& & & I
\end{array}\right]\left[\begin{array}{ccccc}
* & * & * & \cdots & * \\
0 & * & * & \cdots & * \\
& h_{3,2} & h_{3,3} & \cdots & h_{3, m} \\
& & h_{4,3} & \cdots & h_{4, m} \\
& & \ddots & \vdots
\end{array}\right]=\left[\begin{array}{ccccc}
* & * & * & \cdots & * \\
0 & * & * & \cdots & * \\
& 0 & * & \cdots & * \\
& h_{4,3} & \cdots & h_{m, 3} \\
& & & \ddots & \vdots
\end{array}\right]
$$

After m Givens rotations:

$$
G_{m}^{H} \cdots G_{1}^{H} \underline{\boldsymbol{H}}_{m}=Q_{m+1}^{H} \underline{\boldsymbol{H}}_{m}=\left[\begin{array}{ccccc}
r_{1,1} & & \cdots & & r_{1, m} \\
0 & r_{2,2} & & & \\
& 0 & r_{3,3} & & \vdots \\
\vdots & & 0 & \ddots & \\
& & & \ddots & r_{m, m} \\
0 & & \cdots & & 0
\end{array}\right]=\underline{R}_{m}
$$

GMRES

Theorem: An unreduced $(m+1) \times m$ Hessenberg matrix is nonsingular. (unreduced means no zeros on subdiagonal)

Proof: ?

GMRES

So the least squares problem
$y_{m}=\arg \min \left\{\left\|e_{1}\right\| r_{0}\left\|_{2}-\underline{H}_{m} y\right\|_{2}: y \in \mathbb{C}^{m}\right\}$
can be solved by multiplying $\underline{H}_{m} y \approx e_{1}\left\|r_{0}\right\|_{2}$ from left by $R_{m}^{-1} \underline{Q}_{m}^{H}$:
$y_{m}=R_{m}^{-1} \underline{Q}_{m}^{H} e_{1}\left\|r_{0}\right\|_{2}$
In practice:
Stepwise compute $G_{i}^{H}\left(G_{i-1}^{H} \cdots G_{1}^{H} \underline{H}_{i}\right)$ and $G_{i}^{H}\left(G_{i-1}^{H} \cdots G_{1}^{H} e_{1}\left\|r_{0}\right\|_{2}\right)$
In Arnoldi step, update \underline{H}_{i-1} with new column; then carry out previous Givens rotations on new column.
Compute new Givens rotation and update \underline{H}_{i} and right hand side (of small least squares problem): $G_{i}^{H}\left(G_{i-1}^{H} \cdots G_{1}^{H} e_{1}\left\|r_{0}\right\|_{2}\right)$

GMRES

The least squares system now looks like $\underline{R}_{i} y_{i}=Q_{i+1}^{H} e_{1}\left\|r_{0}\right\|_{2}$.
We may assume \underline{R}_{i} has no zeros on diagonal (see later)
Since bottom row of \underline{R}_{i} is zero we can only solve for $\left(Q_{i+1}^{H} e_{1}\left\|r_{0}\right\|_{2}\right)_{1 \ldots i}$ (first i coeff.s)

This is exactly what we do by solving $R_{i} y_{i}=\underline{Q}_{i}^{H} e_{1}\left\|r_{0}\right\|_{2}$
Note LS residual norm equals the norm of the actual residual: $\left\|r_{i}\right\|_{2}=\left|\tilde{q}_{i+1}^{H} e_{1}\right|\left\|r_{0}\right\|_{2}\left(\tilde{q}_{i+1}\right.$ since it changes with $\left.i\right)$:
$\left\|r_{0}-A V_{m} y\right\|_{2}=\left\|V_{m+1} e_{1}\right\| r_{0}\left\|_{2}-V_{m+1} \underline{H}_{m} y\right\|_{2}=\left\|e_{1}\right\| r_{0}\left\|_{2}-\underline{H}_{m} y\right\|_{2}$
This way we can monitor convergence without actually computing updates to solution and residual (cheap).

GMRES

GMRES: $A x=b$
choose x_{0} (E.g. $x_{0}=0$) and tol
$r_{0}=b-A x_{0} ; k=0 ; v_{1}=r_{0} /\left\|r_{0}\right\|_{2} ;$
while $\left\|r_{k}\right\|_{2}>t o l$
$k=k+1$;
$\tilde{v}_{k+1}=A v_{k} ;$
FOR $j=1: k$,

$$
h_{j, k}=v_{j}^{H} \tilde{v}_{k+1} ; \tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{k} ;
$$

END
$h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} ; v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k} ;$
update QR-decomp.: $\underline{H}_{k}=Q_{k+1} \underline{R}_{k}$
$\left\|r_{k}\right\|_{2}=\left|\tilde{q}_{k+1}^{H} e_{1}\right|\left\|r_{0}\right\|_{2}$
END
$y_{k}=R_{k}^{-1} \underline{Q}_{k}^{H} e_{1}\left\|r_{0}\right\|_{2} ; x_{k}=x_{0}+V_{k} y_{k} ;$
$r_{k}=r_{0}-V_{k+1} \underline{H}_{k} y_{k}=V_{k+1}\left(I-\underline{Q}_{k} \underline{Q}_{k}^{H}\right) e_{1}\left\|r_{0}\right\|_{2} ;\left(\right.$ or simply $\left.r_{k}=b-A x_{k}\right)$

Minimum Residual Solutions: GMRES

GMRES: $A x=b$
Choose x_{0}, tolerance ε; set $r_{0}=b-A x_{0} ; v_{1}=r_{0} /\left\|r_{0}\right\|_{2}, k=0$.
while $\left\|r_{k}\right\|_{2} \geq \varepsilon$ do
$k=k+1$
$\tilde{v}_{k+1}=A v_{k}$;
for $j=1 \ldots k$,
$h_{j, k}=v_{j}^{*} \tilde{v}_{k+1} ; \tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{j} ;$
end
$h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} ; v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k}$;
Solve LS $\min _{\zeta}\left\|\eta_{1}\right\| r_{0}\left\|_{2}-\underline{H}_{k} \zeta\right\|_{2}\left(=\left\|r_{k}\right\|_{2}\right)$ by construction
(actually we update the solution rather than solve from scratch - see later)
end
$x_{k}=x_{0}+V_{k} \zeta_{k} ;$
$r_{k}=r_{0}-V_{k+1} \underline{H}_{k} \zeta_{k}=V_{k+1}\left(\eta_{1}\left\|r_{0}\right\|-\underline{H}_{k} \zeta_{k}\right)$ or simply $r_{k}=b-A x_{k}$

Convergence Restarted GCR

Test problem on unit square: 202×202 grid points

$$
\text { Interior: }-\nabla \cdot(\nabla u)=0 \quad \text { Boundary } \begin{aligned}
u & =1 \text { for } x=0 \text { and } y=1 \\
u & =0 \text { elsewhere }
\end{aligned}
$$

Convergence restarted GMRES

Test problem on unit square: 202×202 grid points
Interior: $-\nabla \cdot(\nabla u)=0 \quad$ Boundary $u=1$ for $x=0$ and $y=1$ $u=0$ elsewhere

$$
\log _{10}\|r\|_{2}
$$

GMRES vs GCR

GMRES(m)		200×200 unknowns		
	time (s)	iterations	$\log 10(\|\|\mathrm{r}\|\| /\|\|\mathrm{b}\|\|)$	
full	72.888	587	-10	
100	40.256	1851	-10	
50	41.087	3043	-10	
20	63.604	6985	-10	
10	111.26	13761	-10	
5	199.42	27451	-10	

rGCR(m)	200×200 unknowns		
	time (s)	iterations	$\log 10(\|\|\mathrm{r}\|\| /\|\|\mathrm{b}\|\|)$
full	215.87	587	-10
100	114.04	1851	-10
50	97.89	3043	-10
20	103.56	6985	-10
10	131.69	13761	-10
5	180.88	27451	-10

WV 60:6 / E0/6Z/L0 そ

puә

end

$$
\tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{k} ;
$$

$$
\cdot{ }^{\cdot w} \Lambda V_{H}^{\mathrm{I}+w} \Lambda=
$$

$$
{ }^{w^{*} \mathrm{I}+w} H ~ \partial \not \supset О \mathrm{~N}
$$

$$
\text { Prove } V_{m+1} \text { is orthogonal. }
$$

$$
A V_{m}=V_{m+1} H_{m+1, m}
$$

$$
1
$$

$$
\begin{aligned}
& =\text { ! } \mathrm{IO}
\end{aligned}
$$

A Hermitian upper Hessenberg matrix is tridiagonal!
This means that (in exact arithmetic) we need to orthogonalize each
new vector $\boldsymbol{A} \boldsymbol{v}_{i}$ only against the vectors \boldsymbol{v}_{i-1} and \boldsymbol{v}_{i}.
We could solve the least squares problem in the same way as for
GMRES, except that we save on orthogonalizations (inner products
and vector updates).
What is the computational cost of \boldsymbol{m} iterations of GMRES?
Theorem: Let \boldsymbol{A} be Hermitian and let $\boldsymbol{v}_{1}, v_{2}, \ldots, v_{m}$ be the vectors
generated by the Arnoldi algorithm (so they span $\left.\boldsymbol{K}^{m}\left(A, v_{1}\right)\right)$. Then
$\boldsymbol{A} \boldsymbol{v}_{i} \perp \boldsymbol{v}_{1}, v_{2}, \ldots, v_{i-2}$ and so $A v_{i \perp}$ span $\left\{v_{1}, v_{2}, \ldots, v_{i-2}\right\}$.
Proof:
© 2002 Eric de Sturler
:ł!suoう
:foodd

:urld .ou!̣uun V

WV $606 /$ ع0/6z/I0

胃

Conjugate Gradients (1)

Hermitian matrices: Error minimization in the A -norm
We are solving $A x=b$ with initial guess $x_{0} \rightarrow r_{0}=b-A x_{0}$ and \hat{x} is the solution to $A \boldsymbol{x}=\boldsymbol{b}$.
The error at iteration i is $\varepsilon_{i}=\hat{x}-\left(x_{0}+z_{i}\right)$, where $z_{i} \in \boldsymbol{K}^{i}\left(A, r_{0}\right)$ is the i th update to the initial guess.

Theorem:
Let A be Hermitian, then the vector $z_{i} \in K^{i}\left(A, r_{0}\right)$ satisfies $z_{i}=\arg \min \left\{\left\|\hat{x}-\left(x_{0}+z\right)\right\|_{A}: z \in K^{i}\left(A, r_{0}\right)\right\}$ iff $r_{i} \equiv r_{0}-A z_{i}$ satisfies $r_{i} \perp \boldsymbol{K}^{i}\left(\boldsymbol{A}, r_{0}\right)$.

The most important algorithm of this class is the Conjugate Gradient Algorithm.

Conjugate Gradients (2)

Proof:
$z_{i}=\arg \min \left\{\left\|\hat{x}-\left(x_{0}+z\right)\right\|_{A}: z \in K^{i}\left(A, r_{0}\right)\right\} \Leftrightarrow$ $\left(\hat{x}-x_{0}\right)-z_{i} \perp_{A} K^{i}\left(A, r_{0}\right)$

We know $\boldsymbol{K}^{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{i-1}\right\}$.
This gives $r_{k} \perp_{A}\left(\hat{x}-x_{0}-z_{i}\right)$ for $k=0, \ldots, i-1 \Leftrightarrow$
$\left\langle A\left(\hat{x}-x_{0}-z_{i}\right), r_{k}\right\rangle$ for $k=0, \ldots, i-1 \Leftrightarrow$
$\left\langle b-A x_{0}-A z_{i}, r_{k}\right\rangle$ for $k=0, \ldots, i-1 \Leftrightarrow$
$\left\langle r_{0}-A z_{i}, r_{k}\right\rangle$ for $k=0, \ldots, i-1 \Leftrightarrow$
$\left\langle r_{i}, r_{k}\right\rangle$ for $k=0, \ldots, i-1 \Leftrightarrow$
$r_{i} \perp K^{i}\left(A, r_{0}\right)$

Conjugate Gradients (3)

So we can minimize the error by choosing the update such that the new residual is orthogonal to all previous residuals. Hence, the name orthogonal residual methods.
(note the comparison between $\operatorname{Orthomin}(1)$ and Steepest Descent)
We can generate an orthogonal basis for the Krylov subspace using the Lanczos iteration, the 3-term recurrence version of the Arnoldi-iteration.

Conjugate Gradients (4)

Lanczos iteration:
Choose $\boldsymbol{q}_{1} ; \beta_{0}=\mathbf{0} ; \boldsymbol{q}_{0}=\mathbf{0}$;
FOR $\boldsymbol{i}=1,2, \ldots$ DO

$$
\tilde{q}_{i+1}=A q_{i} ;
$$

$$
\alpha_{i}=\left\langle A q_{i}, q_{i}\right\rangle ; \tilde{q}_{i+1}=\tilde{q}_{i+1}-a_{i} q_{i} ; \tilde{q}_{i+1}=\tilde{q}_{i+1}-\beta_{i-1} q_{i-1} ;
$$

$$
\beta_{i}=\left\|\tilde{q}_{i+1}\right\|_{2} ; q_{i+1}=\tilde{q}_{i+1} / \beta_{i} ;
$$

END

Show $\tilde{\boldsymbol{q}}_{i+1}=\tilde{q}_{i+1}-\beta_{i-1} q_{i-1}$ sets $\tilde{q}_{i+1} \perp q_{i-1}$. (one argument is the symmetry of the Hessenberg matrix for Arnoldi, give another)

This algorithm generates the recurrence relation:
$A Q_{i}=Q_{i} T_{i}+\beta_{i} q_{i+1} e_{i}^{T}$, where $Q_{i}=\left[q_{1} q_{2} \cdots q_{i}\right], T_{i}=\left[\begin{array}{cccc}a_{1} & \beta_{1} & 0 & \cdots \\ \beta_{1} & \alpha_{2} & \beta_{2} & \ddots \\ 0 & \beta_{2} & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots\end{array}\right]$.

Conjugate Gradients (5)

Use Lanczos orthonormal basis for minimizing A-norm of error.
$z_{i}=\arg \min \left\{\left\|\hat{x}-\left(x_{0}+z\right)\right\|_{A}: z \in K^{i}\left(A, r_{0}\right)\right\}$
iff $r_{i} \equiv r_{0}-A z_{i}$ satisfies $r_{i} \perp K^{i}\left(A, r_{0}\right)$.
$q_{1}=r_{0} /\left\|r_{0}\right\|_{2} ;$
Lanczos method: $A Q_{i}=Q_{i} T_{i}+\beta_{i} q_{i+1} e_{i}^{T}$
Solve $r_{0}-A Q_{i y_{i} \perp} Q_{i} \Leftrightarrow Q_{i}^{H}\left(\left\|r_{0}\right\|_{2} q_{1}-A Q_{i} y_{i}\right)=0 \Leftrightarrow$
$Q_{i}^{H}\left(\left\|r_{0}\right\|_{2} q_{1}-A Q_{i} y_{i}\right)=0 \Leftrightarrow\left\|r_{0}\right\|_{2} e_{1}-Q_{i}^{H} A Q_{i} y_{i}=0$
Notice range $\left(Q_{i}\right)=\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{i-1}\right\}$.
$A Q_{i}=Q_{i} T_{i}+\beta_{i} q_{i+1} e_{i}^{T} \Rightarrow Q_{i}^{H} A Q_{i}=T_{i}$
So we reduced our problem to solving $\left\|r_{0}\right\|_{2} e_{1}-T_{i} y_{i}=0$:
$y_{i}=T_{i}^{-1} e_{1}\left\|r_{0}\right\|_{2}$

Conjugate Gradients (6)

In order to update step-by-step we use same trick as in MINRES:
Let $T_{i}=L_{i} D_{i} L_{i}^{H}$; then $y_{i}=L_{i}^{-H} D_{i}^{-1} L_{i}^{-1} e_{1}\left\|r_{0}\right\|_{2}$, where L_{i} is unit lower bi-diagonal with lower diagonal coeff.s, $l_{1}, l_{2}, \ldots, l_{i-2}$ (index gives the column)

Change of variables: $P_{i}=Q_{i} L_{i}^{-H}$ and $\hat{y_{i}}=D_{i}^{-1} L_{i}^{-1} e_{1}\left\|r_{0}\right\|_{2}: Q_{i} y_{i}=P_{i} \hat{y}_{i}$
Each iteration only the last component of \hat{y}_{i} changes. From $P_{i} L_{i}^{H}=Q_{i}$ we get a recurrence for $p_{i}: p_{i}+l_{i-1} p_{i-1}=q_{i}\left(p_{1}=q_{1}\right)$

So every new step we compute a new \boldsymbol{q}_{i+1}, we update the decomposition of \boldsymbol{T}_{i} and from that \hat{y}_{i+1} and \boldsymbol{p}_{i+1}.
$x_{i}=x_{i-1}+p_{i} \hat{y}_{i, i}$
$r_{i}=r_{i-1}-A p_{i} \hat{y}_{i, i}=q_{i+1} \beta_{i} \hat{y}_{i, i} \quad$ (where $\hat{y}_{i, i}$ is i th comp of vector $\left.\hat{y}_{i}\right)$

Conjugate Gradients (7)

This leads to the coupled two-term recurrence form of CG
CG algorithm: $A x=b$
Choose $\boldsymbol{x}_{\mathbf{0}} \rightarrow \boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}$;
$p_{1}=r_{0} ; i=0$
WHILE $\left\|\boldsymbol{r}_{\boldsymbol{i}}\right\|_{2}>\boldsymbol{t o l} \boldsymbol{l}_{\text {DO }}$
$i=i+1$;
$a_{i}=\frac{\left\langle r_{i-1}, r_{i-1}\right\rangle}{\left\langle p_{i-1}, A p_{i-1}\right\rangle} ;$
$x_{i}=x_{i}+\alpha_{i} p_{i} ;$
$r_{i}=r_{i-1}-\alpha_{i} A p_{i} ;$
$\beta_{i}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{i-1}, r_{i-1}\right\rangle} ;$
$p_{i}=r_{i}-\beta_{i} p_{i-1} ;$
END

Conjugate Gradients

ASPD, Solve $A x=b$ by iterative method $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$. Let \hat{x} denote the solution $(A \hat{x}=b)$.
Conjugate Gradients ($C G$)
A defines inner product $\langle x, y\rangle_{A}=y^{*} A x$ and

$$
\|x\|_{A}^{A}=\left(x^{*} A x\right)^{1 / 2}
$$

Often matrices from discretized PDE's are very sparse, so matrix-vector product very cheap: $O(n)$ work. However, std direct method, Gaussian slim. Jakes $O\left(n^{3}\right)$ work. That's where iterative methods come in.

At iteration m, method picks approx. Solution

$$
x_{m} \in K_{m}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{m-1} b\right\}
$$

such that
$\left\|\hat{x}-x_{m}\right\|_{A}$ minimal. (in this sense, the method is optimal)
Theo: $x_{m}=\arg \min _{x \in k_{m}}\left\|\hat{x}-x_{m}\right\|_{A} \Leftrightarrow \hat{x}-x_{m} \perp_{A} k_{m}(A, b)$
We first consider a general approach to implement this method, and then derive a very efficient algorithm. We follow the recipe in lemma 8.9 .
Pick basis $p_{0}, p_{2}, \ldots, p_{m-1}$ for $K_{m}(A, b)$ and set $x_{m}=\sum_{j=0}^{m-1} p_{j} \xi_{j}$, such that $\quad \hat{x}-x_{m} \perp_{A} K_{m}(A, b)$

Since $\left\{P_{0}, \ldots, P_{m-1}\right\}$ basis for $K_{m}(A, b)$, the orthog. relation gives

$$
\left\langle\hat{x}-\sum_{j=0}^{m-1} p_{j} \xi_{j}, p_{i}\right\rangle_{A}=0 \quad \text { for } i=0 . . m-1
$$

Form Gram matrix and solve the system

$$
\begin{aligned}
P_{i}^{*} A\left(\hat{x}-\sum_{j=0}^{m-1} P_{j} \xi_{j}\right)=0 \Leftrightarrow p_{i}^{*} b-\sum_{j=0}^{m-1} p_{i}^{*} A P_{j} \xi_{j} & =0 \\
\text { for } i & =0 . . m-1
\end{aligned}
$$

Note that writing out these equations, we get
$G: G_{i j}=p_{i}^{*} A P_{j}=\left\langle p_{j}, P_{i}\right\rangle_{A}$ and $f: f_{i}=p_{i}^{*} A \hat{x}=p_{i}^{*} b$

$$
=\left\langle\hat{x}_{1} P_{i}\right\rangle_{A}
$$

Solve for the unknown expansion coefficients ξ_{j}.

$$
G \xi=\frac{f}{m-1} \Leftrightarrow \xi=G^{-1} f
$$

$$
x_{m}=\sum_{j=0}^{m-1} p_{j}\left(G^{-1} f\right)_{j} \quad \text { (optimal approx. from } k_{m}(A, b) \text {) }
$$

This also provides some other useful/interesting props. We cannot monitor the error $\hat{x}-x_{m}$, so we monitor the residual $r_{m}=b-A x_{m}=A\left(\hat{x}-x_{m}\right)=A e_{m}$ (e_{m} error).

$$
\begin{aligned}
& \left\langle\hat{x}-x_{m}, p\right\rangle_{A}=0 \text { for all } p \in K_{m}(A, b) \Leftrightarrow \\
& p^{*} A\left(\hat{x}-x_{m}\right)=p^{*} r_{m}=0 \quad \text { for all } p \in K_{m}(A, b)
\end{aligned}
$$

So, $\quad r_{m} \perp K_{m}(A, b)$ (in std. inner product)
Next, we consider an efficient algorithm.
At each step, we extend the search space $K_{m}(A, b)$ to $K_{m+1}(A, b)$, pick additional P_{m} s.t. $\left\{P_{0}, P_{1}, \ldots, P_{m}\right\}$
is a basis for $k_{m+1}(A, b)$.
However, we need to update and solve the Gram matrix system at each step. In general, ξ changes in each component, so we must form x_{m+1} from scratch, and store all vectors P_{0}, P_{1}, \ldots. We can do better.
If we pick the vectors $P_{j} A$-orthogonal (conjugate), that is $\left\langle P_{j}, P_{i}\right\rangle_{A}=P_{i}^{*} A P_{j}=0$, for $i \neq j, G$ is diagonal. Solving for G is then cheap and solving

$$
\left(\begin{array}{llll}
g_{11} & & & \\
& \ddots & & \\
& & g_{m m} & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
\vdots & \\
\xi_{m-1}, m+1 \\
\vdots \\
\xi_{m}
\end{array}\right)=\left(\begin{array}{cc}
P_{0}^{*} b \\
& \vdots \\
P_{m-1}^{*} b \\
P_{m}^{*} b
\end{array}\right)
$$

leaves $\xi_{0} \ldots \xi_{m-1}$ the same. This suggests that we can update x_{m} as we go: $x_{m+1}=x_{m}+P_{m} \xi_{m}$ and discard the p_{j} vectors. However, we need to orthogonalize the p vectors. We also need to extend the krylow space.
We saw that $r_{m} \perp K_{m}(A, b)$. In addition $x_{m} \in K_{m}(A, b)$ and therefore $r_{m}=b-A x_{m} \in K_{m+1}(A, b)$. Since

$$
r_{m} \perp K_{m}(A, b), r_{m} \notin K_{m}(A, b)
$$

so $K_{m+1}(A, b)=\operatorname{span}\left\{r_{m}\right\} \oplus K_{m}(A, b)$
Note the direction span $\left\{r_{m}\right\}$ in $K_{m+1}(A, b)$ and orthog. to $K_{m}(A, b)$ is unique.

This suggests we pick $P_{m}=r_{m}+\sum_{j=0}^{m-1} P_{j} \gamma_{j}$ st. $P_{j}^{*} A P_{m}=0$ for $j=0 . . m-1$.
It turns out we get this mostly for free:

$$
\begin{gathered}
P_{i}^{*} A r_{m}+\sum_{j=0}^{m-1} P_{i}^{*} A p_{j} \gamma_{j}=0 \Leftrightarrow P_{i}^{*} A r_{m}+p_{i}^{*} A P_{i} \gamma_{i}=0 \\
L P_{i}^{*} A P_{j}=0 \quad i \neq j
\end{gathered}
$$

So, $\gamma_{i}=-\frac{p_{i}^{*} A r_{m}}{p_{i}^{*} A p_{i}}$
Note that $P_{i}^{*} A r_{m}=\overline{r_{m}^{*} A p_{i}}$. Since $p_{i} \in K_{i+1}(A, b)$, $A p_{i} \in K_{i+2}(A, b)$ and $r_{m} \perp k_{m}(A, b)$.
So, $r_{m} \perp A p_{i}$ for $m \geqslant i+2 \Leftrightarrow i \leqslant m-2$.
So, only need to orthog. against $P_{m-1}: P_{m}=r_{m}+\gamma_{m-1} P_{m-1}$

$$
\begin{aligned}
\Leftrightarrow \quad P_{m} & =r_{m}-\frac{P_{m-1}^{*} A r_{m}}{P_{m-1}^{*} A P_{m-1}} P_{m-1} \\
x_{m+1} & =x_{m}+P_{m} \xi_{m}=x_{m}+P_{m} \frac{P_{m}^{*} b}{P_{m}^{*} A P_{m}} \\
r_{m+1} & =r_{m}-A p_{m} \xi_{m}
\end{aligned}
$$

Few more simplifications:

$$
\begin{aligned}
& r_{m-1}=r_{m-2}-A p_{m-2} \xi_{m-2}=r_{m-3}-A p_{m-3} \xi_{m-3}-A p_{m-2} \xi_{m-2} \\
& \Rightarrow b=r_{m-1}+\sum_{i=0}^{m-2} A p_{i} \xi_{i}
\end{aligned}
$$

$$
p_{m-1}^{*} b=p_{m-1}^{*} r_{m-1}+\sum_{i=0}^{m-2} p_{m-1}^{*} A p_{i} \xi_{i}
$$

Moreover, $p_{m-1}=r_{m-1}+P_{m-2} \gamma_{m-2} \Rightarrow$

$$
r_{m-1}^{*} P_{m-1}=r_{m-1}^{*} r_{m-1} \quad\left(=\overline{p_{m-1}^{*} b}\right)
$$

Analogously $P_{m-1}^{*} A r_{m}=\overline{r_{m}^{*} A p_{m-1}}$ and

$$
\begin{aligned}
& r_{m}^{*} r_{m}=r_{m}^{*} r_{m-1}-r_{m}^{*} A P_{m-1} \xi_{m-1} \Leftrightarrow \\
& r_{m}^{*} A P_{m-1}=\frac{r_{m}^{*} r_{m}}{\xi_{m-1}}=r_{m}^{*} r_{m} \cdot \frac{P_{m-1}^{*} A P_{m-1}}{P_{m-1}^{*} b} \\
& =r_{m}^{*} r_{m} \cdot \frac{P_{m-1}^{*} A P_{m-1}}{r_{m-1}^{*} r_{m-1}} \\
& S_{0}, \frac{P_{m-1}^{*} A r_{m}}{P_{m-1}^{*} A P_{m-1}}=\frac{r_{m}^{*} r_{m}}{r_{m-1}^{*} r_{m-1}} \cdot \frac{P_{m-1}^{*} A P_{m-1}}{P_{m}^{*} A P_{m-1}}(\text { is real) } \\
& x_{0}=0, r_{0}=b, P_{0}=r_{0} \\
& x_{m}=x_{m-1}+P_{m-1} \cdot \frac{r_{m-1} r_{m-1}}{P_{m-1}^{*} A P_{m-1}}=x_{m-1}+\alpha_{m-1} P_{m-1} \\
& r_{m}=r_{m-1}-A P_{m-1} \cdot \frac{r_{m-1}^{*} r_{m-1}}{P_{m-1}^{*} A P_{m-1}}=r_{m-1}-\alpha_{m-1} A P_{m-1} \\
& P_{m}=r_{m}-P_{m-1} \frac{r_{m}^{*} r_{m}}{r_{m-1}^{*} r_{m-1}}=r_{m}-\beta_{m-1} P_{m-1}
\end{aligned}
$$

Very efficient algorithm. It keeps on ly a few vectors, and per Iteration does 1 matvec, a few dot products, and a few vector additions.

