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Purpose of this Course
In this course we will discuss the most important methods for 
the iterative solution of systems of linear equations and their 
analysis.
We will consider the performance of different methods on 
relevant model problems.
We will consider links to systems of nonlinear equations and 
eigenvalue problems.
We will look at several important areas of current research 
and some surprising problems/results.

Sequences of linear systems
New convergence theory
Preconditioning

Saddle-point problems, adaptive mesh refinement, …

Inexact matrix-vector products, 
…



Overview

Basic iterations, Krylov spaces and Krylov methods
Conjugate Gradients
GMRES, GMRES, MINRES, and variants
Convergence theory
Extensions of Krylov methods
Biconjugate Gradients and variants (BiCGStab,QMR,TFQMR)
Preconditoning (multilevel techniques)
Solving sequences of problems (solvers and preconditioners)
Inexact matrix-vector products
Eigenvalue problems
Nonlinear problems and optimization
…



Sources of Linear Systems of Equations

Scientific and engineering simulations require the solution of 
(many) very large, sparse, linear systems.
The matrices arise from finite element/volume/difference 
discretization of partial differential or integral equations (and 
other areas) describing the physical behavior of complex 
systems.
Accurate solution requires millions of unknowns.
Time-dependent nonlinear problem: Solve a nonlinear system 
each timestep, which (Newton iteration) requires many linear 
systems to be solved.
Very large optimization problems: each iteration requires the 
solution of a linear system.
New fields of application: Financial modeling, Econometry, 
Biology, Computer Graphics, ... 



Problems, Problems, Problems

Problem defined by (non)linear partial differential equation 
 
 ( ) ( ) ( ),tu D u V u R u F x t= ∇⋅ ∇ + ⋅∇ + +   
 
Flow and chemistry, absorption-scattering, deformation, … 
 
• Find u  

• Find ( ),D x ρ  s.t. 2

Du∇∫  minimal where u  solves equation 

• Find ( ),D x p  and ( ),R x p  to match (noisy) data for given F  and u  
 
Write u  as linear combination of (time-dependent) localized basis 
functions, apply ‘Galerkin’ condition, and solve sparse matrix 
equation for the coefficients (solution) 
 
Requires solution of large system of (non)linear equations 



Diffusion / Convection-Diffusion

( )t xu a u bu= ∇⋅ ∇ +

2 310 , 10a b= =
510 , 0a b−= =
310 , 0a b= =

( )tu a u= ∇⋅ ∇

0nu =

0nu =0nu =

1u =



AMR Example




Topology Optimization (with Glaucio Paulino & Shun Wang)
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Optimize material distribution, ρ, in design domain

Minimize compliance uTK(ρ)u, where K(ρ)u=f

Collaboration with Glaucio Paulino, UIUC



Example: Topology Optimization



Topology Optimization




Topology Optimization

Design and construction of structures with better performance, in 
terms of admissible structural responses, without exceeding a certain 
limit cost;

Applications: 

Altair Engineering website – www.altair.com
courtesy James Edward Shooter

courtesy  Ronny Calixto Carbonari



Wing Support Design Airbus

Design Domain

Topology Optimization
Solution

Interpretation and 
Verification

Fabrication
Courtesy Altair Engineering, Inc., Michigan, USA



Diffusive Tomography (with Misha Kilmer)

Developed for medical imaging 
Near IR not significantly absorbed 
by tissue, but it is highly scattered. 
Photons diffuse through tissue in 
density waves

Microstructure (electrical 
permittivity, magnetic permeability) 
is not resolvable.
Macro-structure (optical absorption 
and diffusivity) is recoverable from 
light emerging from tissue
Applications: Breast and brain 
imaging where local rise in 
absorption is tied to presence of 
oxygenated hemoglobin

Collaboration with Misha Kilmer, Tufts



Diffusion Forward Model

Photon fluence due to source input s
and frequency ω given by solution to 
the following PDE 

plus boundary conditions
Desired are parameters p for 
diffusivity, D, and absorption, μ
In matrix form

with A sparse, symmetric positive 
definite real part
Solution at some positions known 
from measurements. Find 
parameters that match solution to 
data.

( ) ( )( ) ( ) ( ) ( )i s s sf r i f r g rD r r
cω ω
ωμ⎡ ⎤−∇ ∇ + + =⎢ ⎥⎣ ⎦

( ) ( )( ), sA D p p f gω ωμ =



Roadkill Project

Courtesy Alla Sheffer, UBC



Surface Parameterization (with Alla Sheffer, UBC)
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Collaboration with Alla Sheffer, UBC  formerly UIUC



Example: Surface Meshing

Remeshed using ‘area preserving’ spacing function



Example: Texture Mapping



Angle-based Flattening

Solve mesh flattening as constrained optimization problem.

Minimize relative deformation of angles, ( )2 2
, , ,

,

/i j i j i j
i j

α φ φ−∑ ,

Subject to constraints on valid 2D mesh 
1. Angles between 0  and π  (orientation), hardly ever a 

problem (dealt with algorithmically) 
2. Angles in triangle sum to π , 
3. Angles around interior node sum to 2π , 
4. Triangles at an interior node need to agree on edge 

lengths: nonlinear constraint. 
 

( ) 2
, , ,

,

min /i j i j i j
i j

α φ φ−∑  subject to ( ) ( ) ( )
2 3 4 0

T

g g gα α α⎡ ⎤ =⎢ ⎥⎣ ⎦  

 
Critical point of Lagrangian ( ) ( ) ( ), TL F gα λ α λ α= +  



Nonlinear System

 Critical point of  : L( , ) = F( ) + Tg( ) ∫ , L( , ) = 0

 Newton iteration: ∫ ,
2 L( , ) = −∫ , L( , )

 Jacobian: ∫2[F( ) + Tg( )] [∫ g( )]T

∫ g( ) 0
=

 (symmetric and indefinite)
A +Gk BT Ck

T

B 0 0
Ck 0 0

  and  depends only on A = diag 2wi
j Gk g(4)( )

  depends only on  and hence is constant (zero,one)B g(2)( )

  depends on  and  and is partially constant ( )Ck g(3) g(4) g(3)



Solving Linear Systems

All the systems derived from these applications are nonlinear
‘Some’ are more nonlinear than ‘others’
The ‘some’ require special treatment
The ‘others’ can be solved (in straightforward fashion) by 
variants of Newton’s method
Results in sequence of linear systems

How to solve a single linear system fast?
How to solve a thousand slowly evolving linear systems fast?



Why Iterative Methods?

Consider N N×  matrix with k nonzeros/row (average), k N
 
direct solver (LU):  work: ( )3O N  storage: ( )2O N  

direct solver for band matrix:  work: ( )2O b N  storage: ( )O bN  

2D problems: ( )1/2b O N= : work: ( )2O N  storage: ( )3/2O N  

3D problems: ( )2/ 3b O N= : work: ( )7 / 3O N  storage: ( )5/ 3O N  

sparse matrix-vector product: work: ( )O Nk  storage: ( )O Nk  
 
For large problems direct methods are impossible, and even for 
moderate problems they are much more expensive than iterative 
methods (in work and storage). 
 



Why Iterative Methods?

Consider N N×  matrix with k  nonzeros/row (average), k N  
 
Consider iterative methods and convergence in m  iterations: 

 typically m N  (independent of 2D, 3D, ... problem), 

 m  depends on characteristics of the problem rather than its size,

 in general m  increases only as moderate function of N , 

 for several problem classes constant m  algorithms are known, 

o Holy Grail of Linear Solvers – Linear Cost 

o next step: model reduction  less than linear (cheating) 

 for many Krylov subspace methods convergence in m N≤  

iterations guaranteed (in exact arithmetic). 



Just in case someone asks



Surface Parameterization



Generalized Saddle-point Problems (with Joerg Liesen)

We consider systems of the type
 

  
0

T xA B f
y gC

⎛ ⎞ ⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜⎟⎜⎟⎜ ⎟=⎟ ⎜⎟⎜⎜ ⎟⎟ ⎜⎟ ⎟⎜ ⎟⎜⎜ ⎝ ⎠⎟⎜ ⎝ ⎠⎝ ⎠
  

 
Systems of this type arise in a variety of problems: 
• Constrained optimization problems 

o FETI (type) methods (Mike Parks) 
o Surface parameterization 

• Systems of PDEs with continuity constraints 
o Navier-Stokes 
o Potential flow in porous media 
o Polycrystal plasticity – metal deformation 
o Electrostatics / electromagnetics 



Nonlinear System

 Critical point of  : L( , ) = F( ) + Tg( ) ∫ , L( , ) = 0

 Newton iteration: ∫ ,
2 L( , ) = −∫ , L( , )

 Jacobian: ∫2[F( ) + Tg( )] [∫ g( )]T

∫ g( ) 0
=

 (symmetric and indefinite)
A +Gk BT Ck

T

B 0 0
Ck 0 0

  and  depends only on A = diag 2wi
j Gk g(4)( )

  depends only on  and hence is constant (zero,one)B g(2)( )

  depends on  and  and is partially constant ( )Ck g(3) g(4) g(3)



Preconditioners

Significant body of work by Elman, Golub, Wathen, Benzi,
Silvester, Gould, Nocedal, Hribar, Simoncini, Perugia, BP, …
 
Use splitting A F E= −  (dS&L): 

( )

1

11 00

T

T

F I S NF E B

MCCF B

−

−−

⎛ ⎞⎛ ⎞ ⎛ ⎞−−⎟⎜ ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜ ⎜=⎟ ⎟⎜ ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎟⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠⎝ ⎠
 

 

( ) 11 TM CF B C
−−= , 1 TN F B−= , MN I= , ( )2NM NM=  

Oblique projection: ( ) ( )
1

1 2 1 2

0
NM U U U UI

−⎛ ⎞⎟⎜= ⎟⎜ ⎟⎝ ⎠
 

 
Principal angles ( cosi iω ϕ= ) between ( )null NM  and 

( )range NM  play important role in eigenvalue bounds. 



Preconditioners

Preconditioned system: 
ˆ

0 ˆ

I S N x f
yM g

⎛ ⎞⎛ ⎞− ⎛ ⎞ ⎟⎜⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜ =⎟ ⎟⎜⎟ ⎜⎜ ⎟ ⎟⎟⎜⎟ ⎜⎟⎜ ⎝ ⎠ ⎟⎜⎝ ⎠ ⎝ ⎠
 

Eigenvalues: 

1
2

max

max

1
1.5
1S S

ω
λ λ

ω

⎛ ⎞+ ⎟⎜− ≤ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠
, ( ){ }1, 1 5 /2λ ∈ ±

 
Further splitting gives fixed point iteration that depends 
only on x : ( )

1k kx I NM Sx f+ = − +   
 
Solves related system ( )( )I I NM S x f− − =   
 

Eigenvalues ( )
1

2 2
max1 1R Sλ ω

−
− ≤ −  



Preconditioning

Consider the following choice of blocks 
 

0

T
k k

k

F E C

C

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 with 
0

TA B
F

B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
0

0 0
k

k

G
E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Explicit inverse of F  known (very good splitting). 
 

0

k k

k

I S N x f
y gM

⎡ ⎤− ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
  and ( )( )k k kI I N M S x f− − =  

 
1
2

max

max

1
1.5
1S S

ω
λ λ

ω

⎛ ⎞+ ⎟⎜− ≤ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠
 and ( )

1
2 2
max1 1R Sλ ω

−
− ≤ −  



Convergence “Three Balls”

GMRES convergence (no scaling)
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Eigenvalues Original Matrix
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Eigenvalues Original Matrix – Closer Look
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Eigenvalues of preconditioned system
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Test Case: Tomography (with Misha Kilmer)

Reconstruct medium by measuring how signals propagate

Parameterize medium and optimize parameters by matching 
measured signal with computed signal (at receivers)

Forward problem 

Have to solve (forward) problem many times (optimization)

Problem is Hermitian for zero frequency and nonzero 
frequency gives imaginary shift

Multiple sources give multiple right hand sides

Nonlinear least squares/Gauss-Newton with line search

First few steps fix background parameters, later steps mainly 
change shape of tumor: ‘diffusion’ jump in small region

Change in matrix concentrated in high frequency modes

Lot of opportunity to exploit structure

( )( ) ( ), ; , ;j ja x p u m x p u fω ω−∇ ∇ + =i



Iteration Counts for Recycle Version
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